Andee Kaplan, Heike Hofmann, Daniel Nordman
February 24, 2015
The main elements of the problem themselves [graph clustering], i.e. the concepts of community and partition, are not rigorously defined, and require some degree of arbitrariness and/or common sense. (Fortunato, 2010)
Conference | Teams Identified | Proportion | Accuracy |
---|---|---|---|
SEC | Vanderbilt, Florida, Louisiana State, South Carolina, Mississippi, Arkansas, Auburn, Kentucky, Georgia, Mississippi State, Alabama, Tennessee | 1.50 | 100% |
MAC |
|
1.46 | 92.9% |
Big 12 | Kansas State, Iowa State, Kansas, Texas A& M, Texas Tech, Baylor, Missouri, Texas, Oklahoma State, Colorado, Oklahoma, Nebraska | 1.44 | 100% |
ACC | Duke, Wake Forest, Virginia, Florida State, Clemson, North Carolina, Maryland, Georgia Tech, North Carolina State | 1.44 | 100% |
Pac-10 | Arizona, Oregon State, Washington, Washington State, Arizona State, UC LA, Stanford, Southern California, Oregon, California | 1.33 | 100% |
Big 10 | Ohio State, Penn State, Michigan, Michigan State, Purdue, Minnesota, Northwestern, Illinois, Iowa, Wisconsin, Indiana | 1.22 | 100% |
WAC |
Nevada, Fresno State, |
1.20 | 88.9% |
Mountain West |
Brigham Young, San Diego State, |
0.96 | 57.1% |
C-USA | Cincinnati, Louisville, Houston, Tulane, Southern Mississippi, Army, Memphis, East Carolina, Alabama Birmingham | 0.91 | 100% |
Big East |
Boston College, Miami Florida, Virginia Tech, Syracuse, Temple, West Virginia, |
0.83 | 88.9% |
Big West |
Middle Tennessee State, Louisiana Lafayette, Louisiana Monroe, |
0.26 | 75% |
Independent | Notre Dame, Notre Dame, Navy, Navy | 0.00 | 100% |
Contact:
ajkaplan@iastate.edu
GML file structure:
## graph ## [ ## directed 0 ## node ## [ ## id 0 ## label "Node 1" ## value 100 ## ] ## node ## [ ## id 1 ## label "Node 2" ## value 200 ## ] ## edge ## [ ## source 1 ## target 0 ## ] ## ]
JSON file structure:
## { ## "nodes": ## [{"id":"n0","v_id":"0","v_label":"Node 1","v_value":"100"}, ## {"id":"n1","v_id":"1","v_label":"Node 2","v_value":"200"}], ## "edges": ## [{"source":0, "target":1}] ## }
Bostock, Michael, Vadim Ogievetsky, and Jeffrey Heer. 2011. “D3: Data-Driven Documents.” IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis). http://vis.stanford.edu/files/2011-D3-InfoVis.pdf.
Couture-Beil, Alex. 2013. Rjson: JSON for R. http://CRAN.R-project.org/package=rjson.
Csardi, Gabor, and Tamas Nepusz. 2006. “The Igraph Software Package for Complex Network Research.” InterJournal Complex Systems: 1695. http://igraph.sf.net.
Fortunato, Santo. 2010. “Community Detection in Graphs.” Physics Reports 486 (3). Elsevier: 75–174.
Girvan, M., and M. E. J. Newman. 2002. “Community Structure in Social and Biological Networks.” Proceedings of the National Academy of Sciences 99 (12): 7821–26. doi:10.1073/pnas.122653799.
McGrath, Cathleen, Jim Blythe, and David Krackhardt. 1996. “Seeing Groups in Graph Layouts1.” Connections 19 (2): 22–29.
RStudio Inc. 2013. Shiny: Web Application Framework for R. http://CRAN.R-project.org/package=shiny.