4 Describing relationships between variables

This chapter provides methods that address a more involved problem of describing relationships between variables and require more computation. We start with relationships between two variables and move on to more.

4.1 Fitting a line by least squares

Goal: Notice a relationship between 2 quantitative variables.

We would like to use an equation to describe how a dependent (response) variable, y, changes in response to a change in one or more independent (experimental) variables), x.

4.1.1 Line review

Recall a linear equation of the form $y=m x+b$

$$
\begin{aligned}
& m=\text { slope } \\
& b=y \text {-intercept }
\end{aligned}
$$

In statistics, we use the notation $y=\beta_{0}+\beta_{1} x+\epsilon$ where we assume β_{0} and β_{1} are unknown parameters and ϵ is some error.

$$
\begin{aligned}
& \beta_{0} \text { : true intercept } \quad \text { E:esror } \\
& \beta_{0} \text { : true slope }
\end{aligned}
$$

$$
b_{0} \text { : estimated intercept } \quad b_{1} \text { : estimatid slope. }
$$

Example 4.1 (Plastic hardness). Eight batches of plastic are made. From each batch one test item is molded and its hardness, y, is measured at time x. The following are the 8 measurements and times:

time	32	72	64	48	16	40	80	56
hardness	230	323	298	255	199	.248	359	305

step 1: look at a sceutrplot to determine if a linear relation ship seems approprict.
 Describe ${ }^{(1}$ strength, ${ }^{\text {Direction, }}{ }^{\text {O form }}$:

- Tee is a strong, positive, liecur relationship between tire and hardness.

How do we find an equation for the line that best fits the data?
A straight line will not pass through every da point, so when we estimate a line, we will hare predicted values (\hat{y}) instead of -bend data (y)

The fitted equation is $\hat{y}=b_{0}+b_{0} x$

Definition 4.1. A residual is the vertical distance between the actual data point and a fitted

$$
\text { line, } \begin{aligned}
e & =y-\hat{y} . \\
& =\boldsymbol{y}-\boldsymbol{b}_{0}-\boldsymbol{b}_{\mathbf{1}} \boldsymbol{x}
\end{aligned}
$$

We choose the line that has the smallest residuals.

The principle of least squares provides a method of choosing a "best" line to describe the data.

Definition 4.2. To apply the principle of least squares in the fitting of an equation for y to an n-point data set, values of the equation parameters are chosen to minimize

$$
\sum_{i=1}^{n}\left(y_{i}^{\boldsymbol{e}_{\boldsymbol{i}}^{\mathbf{2}}} \hat{y}_{i}\right)^{2}
$$

where $y_{1}, y_{2}, \ldots, y_{n}$ are the observed responses and $\hat{y}_{1}, \hat{y}_{2}, \ldots, \hat{y}_{n}$ are corresponding responses predicted or fitted by the equation.

We want to choose b_{0} and b_{1} to minimize

$$
\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-b_{0}-b_{1} x_{i}\right)^{2}
$$

Solving for b_{0} and b_{1}, we get

$$
\begin{aligned}
b_{0} & =\bar{y}-b_{1} \bar{x} \\
b_{1} & =\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{x}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum x_{i} y_{i}-\frac{1}{n} \sum x_{i} \sum y_{i}}{\sum x_{i}^{2}-\frac{1}{n}\left(\sum x_{i}\right)^{2}}
\end{aligned}
$$

Example 4.2 (Plastic hardness, cont'd). Compute the least squares line for the data in Example 4.1.

x	y	$x y$	x^{2}	y^{2}
32	230	7360	1024	52900
72	323	23256	5184	104329
64	298	19072	4096	88804
48	255	12240	2304	65025
16	199	3184	256	39601
40	248	9920	1600	61504
80	359	28720	6400	128881
56	305	17080	3136	93025

4.1.2 Interpreting slope and intercept

- Slope:
- Intercept

Interpreting the intercept is nonsense when

Example 4.3 (Plastic hardness, cont'd). Interpret the coefficients in the plastic hardness example. Is the interpretation of the intercept reasonable?

When making predictions, don't extrapolate.
Definition 4.3. Extrapolation is when a value of x beyond the range of our actual observations is used to find a predicted value for y. We don't know the behavior of the line beyond our collected data.

Definition 4.4. Interpolation is when a value of x within the range of our observations is used to find a predicted value for y.

4.1.3 Correlation

Visually we can assess if a fitted line does a good job of fitting the data using a scatterplot. However, it is also helpful to have methods of quantifying the quality of that fit.

Definition 4.5. Correlation gives the strength and direction of the linear relationship between two variables.

Definition 4.6. The sample correlation between x and y in a sample of n data points $\left(x_{i}, y_{i}\right)$ is

$$
r=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2} \sum\left(y_{i}-\bar{y}\right)^{2}}}=\frac{\sum x_{i} y_{i}-\frac{1}{n} \sum x_{i} \sum y_{i}}{\sqrt{\sum x_{i}^{2}-\frac{1}{n}\left(\sum x_{i}\right)^{2}} \sqrt{\sum y_{i}^{2}-\frac{1}{n}\left(\sum y_{i}\right)^{2}}}
$$

Properties of the sample correlation:

- $-1 \leq r \leq 1$
- $r=-1$ or $r=1$ if all points lie exactly on the fitted line
- The closer r is to 0 , the weaker the linear relationship; the closer it is to 1 or -1 , the stronger the linear relationship.
- Negative r indications negative linear relationship; Positive r indications positive linear relationship
- Interpretation always need 3 things

1. Strength (strong, moderate, weak)
2. Direction (positive or negative)
3. Form (linear relationship or no linear relationship)

Note:

Example 4.4 (Plastic hardness, cont'd). Compute and interpret the sample correlation for the plastic hardness example. Recall,

$$
\sum x=408, \sum y=2217, \sum x y=120832, \sum x^{2}=24000, \sum y^{2}=634069
$$

4.1.4 Assessing models

When modeling, it's important to assess the (1) validity and (2) usefulness of your model.

To assess the validity of the model, we will look to the residuals. If the fitted equation is the good one, the residuals will be:
1.
2.
3.

To check if these three things hold, we will use two plotting methods.

Definition 4.7. A residual plot is a plot of the residuals, $e=y-\hat{y}$ vs. x (or \hat{y} in the case of multiple regression, Section 4.2).

To check if residuals have a Normal distribution,

To assess the usefulness of the model, we use R^{2}, the coefficient of determination.

Definition 4.8. The coefficient of determination, R^{2}, is the proportion of variation in the response that is explained by the model.

Total amount of variation in the response

$$
\operatorname{Var}(y)=
$$

Sum of squares breakdown:

Properties of R^{2} :

- R^{2} is used to assess the fit of other types of relationships as well (not just linear).
- Interpretation - fraction of raw variation in y accounted for by the fitted equation.
- $0 \leq R^{2} \leq 1$
- The closer R^{2} is to 1 , the better the model.
- For SLR, $R^{2}=(r)^{2}$

Example 4.5 (Plastic hardness, contd). Compute and interpret R^{2} for the example of the relationship between plastic hardness and time.

4.1.5 Precautions

Precautions about Simple Linear Regression (SLR)

- r only measures linear relationships
- R^{2} and r can be drastically affected by a few unusual data points.

4.1.6 Using a computer

You can use JMP (or R) to fit a linear model. See BlackBoard for videos on fitting a model using JMP.

4.2 Fitting curves and surfaces by least squares

The basic ideas in Section 4.1 can be generalized to produce a powerful tool: multiple linear regression.

4.2.1 Polynomial regression

In the previous section, a straight line did a reasonable job of describing the relationship between time and plastic hardness. But what to do when there is not a linear relationship between variables?

Example 4.6 (Cylinders, pg. 132). B. Roth studied the compressive strength of concrete-like fly ash cylinders. These were made using various amounts of ammonium phosphate as an additive.

ammonium.phosphate	strength	ammonium.phosphate	strength
0	1221	3	1609
0	1207	3	1627
0	1187	3	1642
1	1555	4	1451
1	1562	4	1472
1	1575	4	1465
2	1827	5	1321
2	1839	5	1289
2	1802	5	1292

Table 1: Additive concentrations and compressive strengths for fly ash cylinders.

Figure 1: Scatterplot of compressive strength of concrete-like fly ash cylinders for various amounts of ammonium phosphate as an additive with a fitted line.

Figure 2: Residual plots for linear fit of cylinder compressive strength on amounts of ammonium phosphate.

A natural generalization of the linear equation

$$
y \approx \beta_{0}+\beta_{1} x
$$

is the polynomial equation

$$
y \approx \beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\cdots+\beta_{p-1} x^{p-1}
$$

The p coefficients are again estimated using the principle of least squares, where the function

$$
S\left(b_{0}, \ldots, b_{p-1}\right)=\sum_{i=1}^{n}\left(y_{i}-\hat{y}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}-\cdots-\beta_{p-1} x_{i}^{p-1}\right)^{2}
$$

must be minimized to find the estimates b_{0}, \ldots, b_{p-1}.

Example 4.7 (Cylinders, cont'd). The linear fit for the relationship between ammonium phosphate and compressive strength of cylinders was not great $\left(R^{2}=2.8147436 \times 10^{-5}\right)$. We can fit a quadratic model.

Call:

```
lm(formula = strength ~ ammonium.phosphate + I(ammonium.phosphate^2),
    data = cylinders)
```

Residuals:

Min	1Q	Median	3Q	Max
-95.983	-70.193	-7.895	51.548	137.419

Coefficients:

	Estimate Std. Error t value $\operatorname{Pr}(>\|t\|)$				
(Intercept)	1242.893	42.982	28.917	$1.43 \mathrm{e}-14$	***
ammonium. phosphate	382.665	40.430	9.465	$1.03 \mathrm{e}-07$	**
I (ammonium.phosphate^2)	-76.661	7.762	-9.877	$5.88 \mathrm{e}-08$	

Signif. codes: $0{ }^{\prime * * * '} 0.001^{\prime * * '} 0.01 '^{\prime \prime} 0.05$ '.' 0.1 ' ' 1

Residual standard error: 82.14 on 15 degrees of freedom
Multiple R-squared: 0.8667, Adjusted R-squared: 0.849
F-statistic: 48.78 on 2 and 15 DF, p-value: $2.725 \mathrm{e}-07$

Example 4.8 (Cylinders, cont'd). How about a cubic model.

Call:
lm (formula $=$ strength \sim ammonium. phosphate $+I$ (ammonium. phosphate~2) + I(ammonium.phosphate^3), data = cylinders)

Residuals:

Min	1Q	Median	3Q	Max
-70.677	-27.353	-3.874	24.579	93.545

Coefficients:

| | Estimate Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$ | | | |
| :--- | ---: | ---: | ---: | :--- | :--- |
| (Intercept) | 1188.050 | 28.786 | 41.272 | $5.03 \mathrm{e}-16 * * *$ |
| ammonium.phosphate | 633.113 | 55.913 | 11.323 | $1.96 \mathrm{e}-08 * * *$ |
| I (ammonium.phosphate~2) | -213.767 | 27.787 | -7.693 | $2.15 \mathrm{e}-06 * * *$ |
| I (ammonium.phosphate~3) | 18.281 | 3.649 | 5.010 | $0.000191 * * *$ |

Signif. codes: $0{ }^{\prime} * * * ' 0.001$ '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 50.88 on 14 degrees of freedom
Multiple R-squared: 0.9523, Adjusted R-squared: 0.9421
F-statistic: 93.13 on 3 and 14 DF , p -value: $1.733 \mathrm{e}-09$

4.2.2 Multiple regression (surface fitting)

The next generalization from fitting a line or a polynomial curve is to use the same methods to summarize the effects of several different quantitative variables x_{1}, \ldots, x_{p-1} on a response y.

$$
y \approx \beta_{0}+\beta_{1} x_{1}+\cdots \beta_{p-1} x_{p-1}
$$

Where we estimate $\beta_{0}, \ldots, \beta_{p-1}$ using the least squares principle. The function

$$
S\left(b_{0}, \ldots, b_{p-1}\right)=\sum_{i=1}^{n}\left(y_{i}-\hat{y}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{1, i}-\cdots-\beta_{p-1} x_{p-1, i}\right)^{2}
$$

must be minimized to find the estimates b_{0}, \ldots, b_{p-1}.

Example 4.9 (New York rivers). Nitrogen content is a measure of river pollution. We have data from 20 New York state rivers concerning their nitrogen content as well as other characteristics. The goal is to find a relationship that explains the variability in nitrogen content for rivers in New York state.

Variable	Description
Y	Mean nitrogen concentration (mg/liter) based on samples taken at regular
X_{1}	intervals during the spring, summer, and fall months
X_{2}	Agriculture: percentage of land area currently in agricultural use
X_{3}	Resest: percentage of forest land
X_{4}	Commercial/Industrial: percentage of land area in either commercial or indus-
	trial use

Table 2: Variables present in the New York rivers dataset.

We will fit each of

$$
\begin{aligned}
& \hat{y}=b_{0}+b_{1} x_{1} \\
& \hat{y}=b_{0}+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}+b_{4} x_{4}
\end{aligned}
$$

and evaluate fit quality.

Call:
$\operatorname{lm}($ formula $=Y \sim X 1$, data $=$ rivers $)$

Residuals:

Min	1Q	Median	3Q	Max
-0.5165	-0.2527	-0.1321	0.1325	1.0274

Coefficients:

	Estimate	Std. Error t value $\operatorname{Pr}(>\|t\|)$		
(Intercept)	0.926929	0.154478	6.000	$1.13 \mathrm{e}-05 * *$
X1	0.011885	0.006401	1.857	0.0798

Signif. codes: $0{ }^{\prime * * * ' ~} 0.001$ '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.411 on 18 degrees of freedom
Multiple R-squared: 0.1608, Adjusted R-squared: 0.1141
F-statistic: 3.448 on 1 and 18 DF, p-value: 0.07977

Call:
$\operatorname{lm}(f$ formula $=\mathrm{Y} \sim \mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3+\mathrm{X} 4$, data $=$ rivers)

Residuals:

Min	1Q	Median	3Q	Max
-0.49404	-0.13180	0.01951	0.08287	0.70480

Coefficients:

	Estimate			Std. Error
	t value $\operatorname{Pr}(>\|t\|)$			
(Intercept)	1.722214	1.234082	1.396	0.1832
X1	0.005809	0.015034	0.386	0.7046
X2	-0.012968	0.013931	-0.931	0.3667
X3	-0.007227	0.033830	-0.214	0.8337
X4	0.305028	0.163817	1.862	0.0823.

Signif. codes: $0{ }^{\prime} * * * ' 0.001 '^{\prime *}$ ' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2649 on 15 degrees of freedom
Multiple R-squared: 0.7094, Adjusted R-squared: 0.6319
F-statistic: 9.154 on 4 and 15 DF, p-value: 0.0005963

There are some more residual plots we can look at for multiple regression that are helpful:
1.
2.
3.
4.
5.

Bonus model:

Call:
$\operatorname{lm}(f o r m u l a=Y ~ X 1+X 2+X 3+X 4+I(X 4 \sim 2)$, data $=$ rivers)

Residuals:

Min	1Q	Median	3Q	Max
-0.34446	-0.07579	-0.00299	0.10060	0.23920

Coefficients:

	Estimate Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$			
(Intercept)	1.294245	0.765169	1.6910 .112880	
X1	0.004900	0.009266	0.529	0.605206
X2	-0.010462	0.008599	-1.217	0.243847
X3	0.073779	0.026304	2.805	$0.014045 *$
X4	1.271589	0.216387	5.876	$4.03 \mathrm{e}-05 * * *$
I(X4~2)	-0.532452	0.105436	-5.050	$0.000177 * * *$

Signif. codes: $0{ }^{\prime * * * '} 0.001$ '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1632 on 14 degrees of freedom
Multiple R-squared: 0.897, Adjusted R-squared: 0.8602
F-statistic: 24.39 on 5 and 14 DF, p-value: 1.9e-06

4.2.3 Overfitting

Equation simplicity (parsimony) is important for

