What is the same?

What is different?

large suffice!

· shape, range (variability/precision)

• What is one measure of center that we could use to compare to all data points to describe how variable the data points are?

XC= it index data point from data set X (ex X3= 3rd index data point)

X=mean of values of all datapoints in X

Calculate the deviations from the mean

	A x _i	Deviation from mean $x_i - \overline{x}$	B Yi	Deviation from mean $y_i - \overline{y}$	C z _i	Deviation from mean $z_i - \overline{z}$
$\not\prec$ (20	6	10	-10	5	-15
xa-	20	6	15	-5	10	-10
X3 —	20	Ó	20	0	15	~ 5
×4 —	20	6	25	5	20	0
(n) X5-	20	\bigcirc	30	10	50	30

 How can we convert this to one number to describe the variability?

Average? => problem is all equal O
Get rid of the negatives
L> square the deviations from the mean

Calculate the squared deviations

A x _i	$\mathbf{x}_{i} - \overline{x}$	Squared Deviation $(x_i - \overline{x})^2$	B Yi	$\mathbf{y}_{i} - \overline{\mathbf{y}}$	Squared Deviation $(y_i - \overline{y})^2$	C z _i	$z_i - \overline{z}$	Squared Deviation $(z_i - \overline{z})^2$
20	0	\bigcirc	10	-10	100	5	-15	226
20	0	\bigcirc	15	-5	25	10	-10	(00)
20	0	\bigcirc	20	0	0	15	-5	25
20	0	6	25	5	25	20	0	0
20	0	Ö	30	10	160	50	30	(900)

Ly outlier effect

 Now, how can we convert this to one number to describe the variability?

Average the squared deviations

Sum of the squared deviations

A x _i	$\mathbf{x}_{i} - \overline{x}$	Squared Deviation $(x_i - \overline{x})^2$	B Yi	$\mathbf{y}_{i} - \overline{\mathbf{y}}$	Squared Deviation $(y_i - \overline{y})^2$	C z _i	$z_i - \overline{z}$	Squared Deviation $(z_i - \overline{z})^2$
20	0	0	10	-10	100	5	-15	225
20	0	0	15	-5	25	10	-10	100
20	0	0	20	0	0	15	-5	25
20	0	0	25	5	25	20	0	0
20	0	0	30	10	100	50	30	900
	Sum =	0		Sum =	250		Sum =	1250
"AV C	erage"				$\frac{250}{n-1} = \frac{250}{4}$, ,	-	$\frac{1250}{n-1} = \frac{1250}{4}$
1-1,		0			62,5			312.5

Divide

52 = variance S= standard deviation

Dataset	S ²
А	0
В	62.5
С	312.5

As variance (sa) increases the spread of the Jata looks larger

In the process we squared the deviations

How do you "un-square" a value?

square-root!

Standard Deviation

Dataset	S ²	S
А	0	0
В	62.5	7.91
С	312.5	17.68

• What do the standard deviations represent?

Compare s (standard deviation) to the graphs

Standard Deviation

$$s = \sqrt{\frac{(y_1 - \bar{y})^2 + (y_2 - \bar{y})^2 + \dots + (y_n - \bar{y})^2}{n - 1}} = \sqrt{\frac{\sum_{i=1}^n (y_i - \bar{y})^2}{n - 1}}$$