
4 Describing relationships between variables

This chapter provides methods that address a more involved problem of describing relationships

between variables and require more computation. We start with relationships between two

variables and move on to more.

4.1 Fitting a line by least squares

Goal:

We would like to use an equation to describe how a dependent (response) variable, y, changes

in response to a change in one or more independent (experimental) variable(s), x.

4.1.1 Line review

Recall a linear equation of the form y = mx+ b

In statistics, we use the notation y = β0 + β1x+ ε where we assume β0 and β1 are unknown

parameters and ε is some error.

The goal is to find estimates b0 and b1 for the parameters.

Example 4.1 (Plastic hardness). Eight batches of plastic are made. From each batch one

test item is molded and its hardness, y, is measured at time x. The following are the 8

measurements and times:

time 32 72 64 48 16 40 80 56
hardness 230 323 298 255 199 248 359 305
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How do we find an equation for the line that best fits the data?

Definition 4.1. A residual is the vertical distance between the actual data point and a fitted

line, e = y − ŷ.
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The principle of least squares provides a method of choosing a “best” line to describe the

data.

Definition 4.2. To apply the principle of least squares in the fitting of an equation for y to

an n-point data set, values of the equation parameters are chosen to minimize

n∑
i=1

(yi − ŷi)2

where y1, y2, . . . , yn are the observed responses and ŷ1, ŷ2, . . . , ŷn are corresponding responses

predicted or fitted by the equation.

We want to choose b0 and b1 to minimize

n∑
i=1

(yi − ŷi)2 =
n∑

i=1
(yi − b0 − b1xi)2
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Solving for b0 and b1, we get

b0 = y − b1x

b1 =
∑(xi − x)(yi − x)∑(xi − x)2 =

∑
xiyi − 1

n

∑
xi

∑
yi∑

x2
i − 1

n
(∑

xi)2

Example 4.2 (Plastic hardness, cont’d). Compute the least squares line for the data in

Example 4.1.

x y xy x2 y2

32 230 7360 1024 52900
72 323 23256 5184 104329
64 298 19072 4096 88804
48 255 12240 2304 65025
16 199 3184 256 39601
40 248 9920 1600 61504
80 359 28720 6400 128881
56 305 17080 3136 93025
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4.1.2 Interpreting slope and intercept

• Slope:

• Intercept

Interpreting the intercept is nonsense when

Example 4.3 (Plastic hardness, cont’d). Interpret the coefficients in the plastic hardness

example. Is the interpretation of the intercept reasonable?
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When making predictions, don’t extrapolate.

Definition 4.3. Extrapolation is when a value of x beyond the range of our actual observations

is used to find a predicted value for y. We don’t know the behavior of the line beyond our

collected data.

Definition 4.4. Interpolation is when a value of x within the range of our observations is

used to find a predicted value for y.

4.1.3 Correlation

Visually we can assess if a fitted line does a good job of fitting the data using a scatterplot.

However, it is also helpful to have methods of quantifying the quality of that fit.

Definition 4.5. Correlation gives the strength and direction of the linear relationship

between two variables.

Definition 4.6. The sample correlation between x and y in a sample of n data points (xi, yi)

is

r =
∑(xi − x)(yi − y)√∑(xi − x)2 ∑(yi − y)2

=
∑
xiyi − 1

n

∑
xi

∑
yi√∑

x2
i − 1

n
(∑

xi)2
√∑

y2
i − 1

n
(∑

yi)2
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Properties of the sample correlation:

• −1 ≤ r ≤ 1

• r = −1 or r = 1 if all points lie exactly on the fitted line

• The closer r is to 0, the weaker the linear relationship; the closer it is to 1 or −1, the

stronger the linear relationship.

• Negative r indications negative linear relationship; Positive r indications positive linear

relationship

• Interpretation always need 3 things

1. Strength (strong, moderate, weak)

2. Direction (positive or negative)

3. Form (linear relationship or no linear relationship)

Note:
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r =  0 r =  0.98

r =  −0.2 r =  −0.77

−2 0 2 −2 0 2
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Example 4.4 (Plastic hardness, cont’d). Compute and interpret the sample correlation for

the plastic hardness example. Recall,

∑
x = 408,

∑
y = 2217,

∑
xy = 120832,

∑
x2 = 24000,

∑
y2 = 634069
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4.1.4 Assessing models

When modeling, it’s important to assess the (1) validity and (2) usefulness of your model.

To assess the validity of the model, we will look to the residuals. If the fitted equation is the

good one, the residuals will be:

1.

2.

3.

To check if these three things hold, we will use two plotting methods.

Definition 4.7. A residual plot is a plot of the residuals, e = y− ŷ vs. x (or ŷ in the case of

multiple regression, Section 4.2).
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To check if residuals have a Normal distribution,

To assess the usefulness of the model, we use R2, the coefficient of determination.

Definition 4.8. The coefficient of determination, R2, is the proportion of variation in the

response that is explained by the model.

Total amount of variation in the response

V ar(y) =

Sum of squares breakdown:
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Properties of R2:

• R2 is used to assess the fit of other types of relationships as well (not just linear).

• Interpretation - fraction of raw variation in y accounted for by the fitted equation.

• 0 ≤ R2 ≤ 1

• The closer R2 is to 1, the better the model.

• For SLR, R2 = (r)2

Example 4.5 (Plastic hardness, contd). Compute and interpret R2 for the example of the

relationship between plastic hardness and time.
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4.1.5 Precautions

Precautions about Simple Linear Regression (SLR)

• r only measures linear relationships

• R2 and r can be drastically affected by a few unusual data points.

4.1.6 Using a computer

You can use JMP (or R) to fit a linear model. See BlackBoard for videos on fitting a model

using JMP.

4.2 Fitting curves and surfaces by least squares

The basic ideas in Section 4.1 can be generalized to produce a powerful tool: multiple linear

regression.

4.2.1 Polynomial regression

In the previous section, a straight line did a reasonable job of describing the relationship

between time and plastic hardness. But what to do when there is not a linear relationship

between variables?
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Example 4.6 (Cylinders, pg. 132). B. Roth studied the compressive strength of concrete-like

fly ash cylinders. These were made using various amounts of ammonium phosphate as an

additive.

ammonium.phosphate strength ammonium.phosphate strength
0 1221 3 1609
0 1207 3 1627
0 1187 3 1642
1 1555 4 1451
1 1562 4 1472
1 1575 4 1465
2 1827 5 1321
2 1839 5 1289
2 1802 5 1292

Table 1: Additive concentrations and compressive strengths for fly ash cylinders.
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Figure 1: Scatterplot of compressive strength of concrete-like fly ash cylinders for various

amounts of ammonium phosphate as an additive with a fitted line.
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Figure 2: Residual plots for linear fit of cylinder compressive strength on amounts of

ammonium phosphate.

A natural generalization of the linear equation

y ≈ β0 + β1x

is the polynomial equation

y ≈ β0 + β1x+ β2x
2 + · · · + βp−1x

p−1.

The p coefficients are again estimated using the principle of least squares, where the function

S(b0, . . . , bp−1) =
n∑

i=1
(yi − ŷ)2 =

n∑
i=1

(yi − β0 − β1xi − · · · − βp−1x
p−1
i )2

must be minimized to find the estimates b0, . . . , bp−1.
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Example 4.7 (Cylinders, cont’d). The linear fit for the relationship between ammonium

phosphate and compressive strength of cylinders was not great (R2 = 2.8147436 × 10−5). We

can fit a quadratic model.

Call:

lm(formula = strength ~ ammonium.phosphate + I(ammonium.phosphate^2),

data = cylinders)

Residuals:

Min 1Q Median 3Q Max

-95.983 -70.193 -7.895 51.548 137.419

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1242.893 42.982 28.917 1.43e-14 ***

ammonium.phosphate 382.665 40.430 9.465 1.03e-07 ***

I(ammonium.phosphate^2) -76.661 7.762 -9.877 5.88e-08 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 82.14 on 15 degrees of freedom

Multiple R-squared: 0.8667, Adjusted R-squared: 0.849

F-statistic: 48.78 on 2 and 15 DF, p-value: 2.725e-07

16



1200

1400

1600

1800

0 1 2 3 4 5

Percent ammonium phosphate

C
om

pr
es

si
ve

 s
tr

en
gt

h 
(p

si
)

−100

−50

0

50

100

0 1 2 3 4 5

x

e

−100

−50

0

50

100

−2 −1 0 1 2

theoretical

sa
m

pl
e

17



Example 4.8 (Cylinders, cont’d). How about a cubic model.

Call:

lm(formula = strength ~ ammonium.phosphate + I(ammonium.phosphate^2) +

I(ammonium.phosphate^3), data = cylinders)

Residuals:

Min 1Q Median 3Q Max

-70.677 -27.353 -3.874 24.579 93.545

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1188.050 28.786 41.272 5.03e-16 ***

ammonium.phosphate 633.113 55.913 11.323 1.96e-08 ***

I(ammonium.phosphate^2) -213.767 27.787 -7.693 2.15e-06 ***

I(ammonium.phosphate^3) 18.281 3.649 5.010 0.000191 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 50.88 on 14 degrees of freedom

Multiple R-squared: 0.9523, Adjusted R-squared: 0.9421

F-statistic: 93.13 on 3 and 14 DF, p-value: 1.733e-09
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4.2.2 Multiple regression (surface fitting)

The next generalization from fitting a line or a polynomial curve is to use the same methods

to summarize the effects of several different quantitative variables x1, . . . , xp−1 on a response

y.

y ≈ β0 + β1x1 + · · · βp−1xp−1

Where we estimate β0, . . . , βp−1 using the least squares principle. The function

S(b0, . . . , bp−1) =
n∑

i=1
(yi − ŷ)2 =

n∑
i=1

(yi − β0 − β1x1,i − · · · − βp−1xp−1,i)2

must be minimized to find the estimates b0, . . . , bp−1.

Example 4.9 (New York rivers). Nitrogen content is a measure of river pollution. We

have data from 20 New York state rivers concerning their nitrogen content as well as other

characteristics. The goal is to find a relationship that explains the variability in nitrogen

content for rivers in New York state.

Variable Description

Y Mean nitrogen concentration (mg/liter) based on samples taken at regular

intervals during the spring, summer, and fall months

X1 Agriculture: percentage of land area currently in agricultural use

X2 Forest: percentage of forest land

X3 Residential: percentage of land area in residential use

X4 Commercial/Industrial: percentage of land area in either commercial or indus-

trial use

Table 2: Variables present in the New York rivers dataset.
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We will fit each of

ŷ = b0 + b1x1

ŷ = b0 + b1x1 + b2x2 + b3x3 + b4x4

and evaluate fit quality.

Call:

lm(formula = Y ~ X1, data = rivers)

Residuals:

Min 1Q Median 3Q Max

-0.5165 -0.2527 -0.1321 0.1325 1.0274

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.926929 0.154478 6.000 1.13e-05 ***

X1 0.011885 0.006401 1.857 0.0798 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.411 on 18 degrees of freedom

Multiple R-squared: 0.1608, Adjusted R-squared: 0.1141

F-statistic: 3.448 on 1 and 18 DF, p-value: 0.07977
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Call:

lm(formula = Y ~ X1 + X2 + X3 + X4, data = rivers)

Residuals:

Min 1Q Median 3Q Max

-0.49404 -0.13180 0.01951 0.08287 0.70480

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.722214 1.234082 1.396 0.1832

X1 0.005809 0.015034 0.386 0.7046

X2 -0.012968 0.013931 -0.931 0.3667

X3 -0.007227 0.033830 -0.214 0.8337

X4 0.305028 0.163817 1.862 0.0823 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2649 on 15 degrees of freedom

Multiple R-squared: 0.7094, Adjusted R-squared: 0.6319

F-statistic: 9.154 on 4 and 15 DF, p-value: 0.0005963
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There are some more residual plots we can look at for multiple regression that are helpful:

1.

2.

3.

4.

5.
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Bonus model:

Call:

lm(formula = Y ~ X1 + X2 + X3 + X4 + I(X4^2), data = rivers)

Residuals:

Min 1Q Median 3Q Max

-0.34446 -0.07579 -0.00299 0.10060 0.23920

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.294245 0.765169 1.691 0.112880

X1 0.004900 0.009266 0.529 0.605206

X2 -0.010462 0.008599 -1.217 0.243847

X3 0.073779 0.026304 2.805 0.014045 *

X4 1.271589 0.216387 5.876 4.03e-05 ***

I(X4^2) -0.532452 0.105436 -5.050 0.000177 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1632 on 14 degrees of freedom

Multiple R-squared: 0.897, Adjusted R-squared: 0.8602

F-statistic: 24.39 on 5 and 14 DF, p-value: 1.9e-06
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4.2.3 Overfitting

Equation simplicity (parsimony) is important for
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