5 Probability: the mathematics of randomness

The theory of probability is the mathematician's description of random variation. This chapter introduces enough probability to serve as a minimum background for making formal statistical inferences.

Recall this overview:

$$
\text { ch } 2 .
$$

Ch. 384

5.1 (Discrete) random variables

The concept of a random variable is introduced in general terms and the special case of discrete data is considered.

```
recall:
```

Discrete data measurements are separate point S (eg. IF of pases in a book)

5.1.1 Random variables and distributions

It is helpful to think of data values as subject to chance influences. Chance is commonly introduced into the data collection process through

1. Random sampling technique \Longrightarrow
2. Measurement error causes
3. changes in system conditions

$$
\rightarrow \text { cap ital letters used to stand } \quad \text { for R.V.S (random variables) }
$$

Definition 5.1. A random variable is a quantity that (prior to observation) can be thought of as dependent on chance phenomena.
$x=$ the value of a coin toss heads or tails)
$Z=$ the amount of torque required to 100 sen the next bolt
$T=$ the time you"l have to watt for next bus home process in a day
$S=$ the number of unprovoked shark attacks off coast of Florida next year

Definition 5.2. A discrete random variable is one that has isolated or separated possible values (rather than a continuum of available outcomes).

Definition 5.3. A continuous random variable is one that can be idealized as having an entire (continuous) interval of numbers as its set of values.
discrete: X, N, S
continuous: T, Z

Example 5.1 (Roll of a die).
list of possible values:
$x=$ roll of 6 -sided fair die $-1,2,3,4,5,6$
$y=$ roll of 6 -sided unfair die $-1,2,3,4,5,6$
How to distinguish btw X and Y ?
probability of occurrence!

Definition 5.4. To specify a probability distribution for a random variable is to give its set of possible values and (in one way or another) consistently assign numbers between 0 and 1 called probabilities - as measures of the likelihood that the various numerical values will occur Example 5.2 (Roll of a die, cont'd).
We expect a fair dice to land on the number 3 roughly one out of every 6 tosses.

$$
P[x=3]=\frac{1}{6}
$$

suppose the unfair dice is weighted so that the number 3 only lands one out of every 22 tosses. $P[y=3]=\frac{1}{22}$

y	1	2	3	4	5	6
$P[Y=y]$	$5 / 22$	$7 / 44$	$1 / 22$	$7 / 44$	$2 / 11$	$5 / 22$

Example 5.3 (Shark attacks). Suppose S is the number of provoked shark attacks off FL next year. This has an infinite number of possible values. Here is one possible (made up) distribution: 5 can take on values $1,2,3,4$
$\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots$
$=\frac{\pi^{2}}{6}$

s	1	2	3	\cdots	k	\cdots
$P[S=s]$	$\frac{6}{\pi^{2}}$	$\frac{1}{2^{2}} \frac{6}{\pi^{2}}$	$\frac{1}{3^{2}} \frac{6}{\pi^{2}}$	\cdots	$\frac{1}{k^{2}} \frac{6}{\pi^{2}}$	\cdots

All the probabilities for a R.V. must add to 1.

5.1.2 Probability mass functions and cumulative distribution functions

The tool most often used to describe a discrete probability distribution is the probability mass function.

Definition 5.5. A probability mass function (mf) for a discrete random variable X, having possible values x_{1}, x_{2}, \ldots, is a-non-negative function $f(x)$ with $f\left(x_{1}\right)=P\left[X=x_{1}\right]$, the probability that X takes the value x_{1}.
we can also write $f x$ for the MF of x and FS_{5} for the emf or 5 .

Properties of a mathematically valid probability mass function:

1. $f(x) \geqslant 0$ for al x (positive probabilities)
2. $\sum_{x} f(x)=1$ (sum to 1)

A probability mass function $f(x)$ gives probabilities of occurrence for individual values. Adding the appropriate values gives probabilities associated with the occurrence of multiple values. $P\left[x\right.$ is x_{1} or $\left.x_{2}\right]=P\left[x=x_{1}\right] \pm P\left[x=x_{2}\right]$

Example 5.4 (Torque). Let $Z=$ the torque, rounded to the nearest integer, required to loosen the next bolt on an apparatus.

z	11	12	13	14	15	16	17	18	19	20
$f(z)$	0.03	0.03	0.03	0.06	0.26	0.09	0.12	0.20	0.15	0.03

Calculate the following probabilities:

$$
\begin{aligned}
& P(Z \leq 14)=p[z=11 \text { or } z=12 \text { or } z=13 \text { or } z=14] \\
&=p[z=11]+p[z=12]+P[z=13]+p[z=14] \\
&=f(11)+f(12)+f(13)+f(14) \\
&=0.03+0.03+0.03+0.06=0.15 \\
& P(Z>16)= p[z=17 \text { or } z=18 \text { or } z=19 \text { or } z=20] \\
&=f(17)+f(18)+f(19)+f(20) \\
&= 0.12+0.20+0.15+0.03=0.5 \\
& P(Z \text { is even })=p[z=12 \text { or } z=14 \text { or } z=16 \text { or } z=18 \text { or } z=20] \\
&=f(12)+f(14)+f(16)+f(18)+f(20) \\
&=0.03+0.06+0.09+0.20+0.03=0.41 \\
& P(Z \text { in }\{15,16,18\})=P[z=15 \text { or } z=16 \text { or } z=(8] \\
&=f(15)+f(16)+f(18) \\
& 5=0.26+0.09+0.2=0.55
\end{aligned}
$$

Another way of specifying a discrete probability distribution is sometimes used.

Definition 5.6. The cumulative probability distribution (cdf) for a random variable X is a function $F(x)$ that for each number x gives the probability that X takes that value or a smaller one, $F(x)=P[X \leq x]$.

Since (for discrete distributions) probabilities are calculated by summing values of $f(x)$,

$$
F(x)=P[X \leq x]=\sum_{y \leq x} f(y)
$$

Properties of a mathematically valid cumulative distribution function:

1. $F(x) \geqslant 0$ for all real numbers x
2. F is monotonically
increasing (when x increases, y either stays same or increase)
3. $F(x)$ is right continuous
4. $\lim _{x \rightarrow-\infty} F(x)=0$ and $\lim _{x \rightarrow \infty} F(x)=1$

right-continvous

In the discrete case, the graph $F(x)$ will be stair-step graph with jumps located at possible values and equal in size to the probabilities associated with these values.

Example 5.5 (Torque, cont'd). Let $Z=$ the torque, rounded to the nearest integer, required to loosen the next bolt on an apparatus.

z	11	12	13	14°	15	16^{\cdot}	17	18	19	20
$F(z)$	0.03	0.06	0.09	0.15	0.41	0.50	0.62	0.82	0.97	1

Figure 1: Cdf function for torques.

Calculate the following probabilities using the pdf only:

$$
F(10.7)=P[z \leqslant 10.7]=p[z \leqslant 10]=0
$$

$$
P(Z \leq 15.5)=p[z \leq 15]=0.41
$$

$$
\begin{aligned}
& P(12.1<Z \leq 14)=p[z=13 \text { or } z=\{4] \\
&=f(14)+f(13)=[f(14)+f(13)+f(1 a)+f(11)] \\
&=P[z \leq 14]-p[z \leq 12]-\underbrace{[f(12)-f(11)]}_{p[z \leq 14]} \\
&=F[(14]-F[12]=0.15-0.06=0.09 \\
& P(15 \leq Z<18)=p[z=15.16,0,17] \\
&=p[z \leq 17]-p[z \leq 14] \\
&=F(17)-F(14]=0.62-0.15=0.47 \\
& \hline
\end{aligned}
$$

Example 5.6. Say we have a random variable Q with pmf:

q	$f(q)$	$\mathcal{F}(\%)$	
1	0.34	0.34	
2	0.1		0.44
3	0.22		0.66
7	0.34	1	

Draw the cdf.

5.1.3 Summaries

Almost all of the devices for describing relative frequency (empirical) distributions in Ch. 3 have versions that can describe (theoretical) probability distributions.

1. probability histograms (hist grams based on theoretical probabilities)
2. mean (measure of locution)
3. variance (measure of spread)

Definition 5.7. The mean or expected value of a discrete random variable X is

$$
\begin{aligned}
& \mathrm{EX}=\sum_{x} x f(x) \\
& \mathbf{E}(\mathbf{X}) \longleftarrow \text { sometimes denoted } \mu
\end{aligned}
$$

EX is the weighted average of all possible values of X, weighted by their probe bilities.

EX is the mean of the distribution of X.

Example 5.7 (Roll of a die, cont'd). Calculate the expected value of a toss of a fair and unfair die.

$$
\begin{gathered}
\boldsymbol{f}(\boldsymbol{x})=\begin{array}{ccccccc}
x & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline P[X=x] & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 & 1 / 6 \\
& \cdot & & & & \\
\hline P[Y=y] & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 2 / 22 & 7 / 44 & 1 / 22 & 7 / 44 & 2 / 11 & 5 / 22
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Fair die: } x f(x) \\
& \begin{aligned}
E X & =1\left(\frac{1}{6}\right)+2\left(\frac{1}{6}\right)+3\left(\frac{1}{6}\right)+4\left(\frac{1}{6}\right)+5\left(\frac{1}{6}\right)+6\left(\frac{1}{6}\right) \\
& =3.5
\end{aligned}
\end{aligned}
$$

Unfair die:

$$
\begin{aligned}
E Y & =1\left(\frac{5}{22}\right)+2\left(\frac{7}{44}\right)+3\left(\frac{1}{22}\right)+4\left(\frac{7}{14}\right)+5\left(\frac{2}{11}\right)+6\left(\frac{5}{22}\right) \\
& =3.5909
\end{aligned}
$$

The average roll of the unfair die is 3.5907, higher tran the fair die.

Example 5.8 (Torque, cont'd). Let $Z=$ the torque, rounded to the nearest integer, required to loosen the next bolt on an apparatus.

z	11	12	13	14	15	16	17	18	19	20
$f(z)$	0.03	0.03	0.03	0.06	0.26	0.09	0.12	0.20	0.15	0.03

Calculate the expected torque required to loosen the next bolt.

$$
\begin{aligned}
E Z & =11(.03)+12(.03)+13(.03)+\ldots+20(.03) \\
& =16.35
\end{aligned}
$$

The average torque requited to loosen the next bolt is 16.35 units.

Definition 5.8. The variance of a discrete random variable X is

$$
\sigma^{2}=\operatorname{var}(x)
$$

The standard deviation of X is $\sqrt{\operatorname{Var} X}$.
computationally easier

$$
\begin{aligned}
& S D(x)=6 \\
& \text { (notation) }
\end{aligned}
$$

The variance is the average squared deviation of a random variable from its mean.

Example 5.9. Say we have a random variable Q with mf:

$$
\begin{array}{cc}
q & f(q) \\
\hline 1 & 0.34 \\
2 & 0.1 \\
3 & 0.22 \\
7 & 0.34
\end{array}
$$

Calculate the variance and the standard deviation.
Long way:

$$
\begin{aligned}
E Q= & 1(.34)+2(.1)+3(.22)+7(.34)=3.58 \\
\rightarrow \operatorname{Var} Q= & (1-3.58)^{2}(.34)+(2-3.58)^{2}(.1)+(3-3.58)^{2}(.22) \\
& +(7-3.58)^{2}(.34) \\
= & 6.56
\end{aligned}
$$

Short way:

$$
\begin{aligned}
E\left(Q^{2}\right) & =\sum_{q} q^{2} f(q) \\
& =1(.34)+4(.1)+9(.22)+49(.34) \\
& =19.38 \\
\operatorname{Var} Q & =E\left(Q^{2}\right)-(E Q)^{2} \leftarrow \\
& =19.38-(3.58)^{2} \\
& =6.56
\end{aligned}
$$

Example 5.10 (Roll of a die, cont'd). Calculate the variance and standard deviation of a roll of a fair die.

$$
\begin{aligned}
E X & =3.5 \\
E X^{2} & =\frac{1}{6}(1+4+9+16+25+36) \\
& =15.17 \\
\operatorname{Var} X & =E X^{2}-(E X)^{2} \\
& =15.17-(3.5)^{2} \\
& =2.92 \\
S D(X) & =\sqrt{\operatorname{Varx}}=1.71
\end{aligned}
$$

5.1.4 Special discrete distributions

Discrete probability distributions are sometimes developed from past experience with a particular physical phenomenon.

On the other hand, sometimes an easily manipulated set of mathematical assumptions having the potential to describe a variety of real situations can be put together.

One set of assumptions is that of independent identical success-failure trials where

1. There is a constant chance of success on each repetition of the scenario (probability p)
2. The repetitions are independent -i.e. Knowing the outcome of any one of teem does not change assessments of chance related to any others.
$X=$ the number of successes in n independent identical success-failure trials
parameters

Definition 5.9. The binomial $(\underline{n, p})$ distribution is a discrete probability distribution with mf

$$
f(x)=\left\{\begin{array}{cc}
\frac{0}{x!(n-x)!} \stackrel{\downarrow}{x}^{x}(1-p)^{n-x} & x=0,1, \ldots, n \\
0 & \text { otherwise }
\end{array}\right. \text { from the comes }
$$

for n a positive integer and $0<p<1$.

Examples that could follow a $\operatorname{binomial}(n, p)$ distribution:

- Number of conforming pellets in a patch of $n=50$ pellets made by a machine.
- Number of runs of the same chemical process w/ $\%$ yield above 80%, given you van the process lou o fires.
- Number of rivets that fail in aboiler of $n=25$ rivets within 3 years of operation.

Note: "Success" doesn't have to be good.

For X a $\operatorname{binomial}(n, p)$ random variable,

Example 5.11 (10 component machine). Suppose you have a machine with 10 independent components in series. The machine only works if all the components work. Each component succeeds with probability $p=0.95$ and fails with probability $1-p=0.05$.

$$
\begin{aligned}
& \text { ability } 1-p=0.05 \text {. } \\
& p+1-\rho=1 \text { (i.e. he probability of succeeding }
\end{aligned}
$$

Let Y be the number of components that succeed in a given run of the machine. Then

$$
Y \sim \operatorname{Binomial}(n=10, p=0.95)
$$

Question: what is the probability of the machine working properly?

$$
\begin{aligned}
& 1][2 \rightarrow[\sqrt{3} \rightarrow \cdots \\
& p(y=x) \\
& p(\text { machine working })=P(y=10) \\
& \underbrace{\substack{10 \\
n!}}_{\substack{(n-x)!x!\\
10 \\
10}} \\
& =\frac{101}{0!10!} p^{10}(1-p)^{10-10} \\
& =p^{10} \\
& =.95^{10} \\
& =0.5987 \text { (not very radiable) }
\end{aligned}
$$

Example 5.12 (10 component machine, cont'd). What if I arrange these 10 components in parallel? This machine succeeds if at least 1 of the components succeeds.

What is the probability that the new machine succeeds?

$$
\begin{aligned}
P(\text { new machine succeeding }) & =1-P(\text { new machine failing }) \\
& =1-P(\text { ad components failing }) \\
& =1-P(Y=0) \\
& =1-\frac{10 y}{0!10!} p^{0}(1-p)^{10-0} \\
& =1-(.05)^{10}
\end{aligned}
$$

$$
\approx 1
$$

Example 5.13 (10 component machine, cont'd). Calculate the expected number of components to succeed and the variance.

$$
\begin{aligned}
& \operatorname{Var} y=\operatorname{np}(1-p)=10.95(1-.98)=.475 \\
& S D(y)=\sqrt{\operatorname{Vary}}=\sqrt{n p(1-p)}=.689
\end{aligned}
$$

Consider a variable

$$
X=\text { the number of trials required to first obtain a success result }
$$

Definition 5.10. The geometric(p) distribution is a discrete probability distribution with pmf

$$
f(x)=\left\{\begin{array}{cc}
p(1-p)^{x-1} & x=0,1, \ldots \\
0 & \text { otherwise }
\end{array}\right.
$$

for $0<p<1$.

Examples that could follow a $\operatorname{binomial}(n, p)$ distribution:

For X a geometric (p) random variable,

$$
\begin{aligned}
\mu & =\mathrm{E} X=\sum_{x=0}^{n} x p(1-p)^{x-1}=\frac{1}{p} \\
\sigma^{2} & =\operatorname{Var} X=\sum_{x=0}^{n}\left(x-\frac{1}{p}\right)^{2} p(1-p)^{x-1}=\frac{1-p}{p^{2}}
\end{aligned}
$$

Cdf derivation:

Example 5.14 (NiCad batteries). An experimental program was successful in reducing the percentage of manufactured NiCad cells with internal shorts to around 1 Calculate
$P(1$ st or 2 nd cell tested has the 1 st short $)$
P (at least 50 cells tested w/o finding a short)

Calculate the expected test number at which the first short is discovered and the variance in test numbers at which the first short is discovered.

It's often important to keep track of the total number of occurrences of some relatively rare phenomenon.

Consider a variable
$X=$ the count of occurences of a phenomenon across a specified interval of time or space

Definition 5.11. The Poisson (λ) distribution is a discrete probability distribution with pmf

$$
f(x)=\left\{\begin{array}{cc}
\frac{e^{-\lambda} \lambda^{x}}{x!} & x=0,1, \ldots \\
0 & \text { otherwise }
\end{array}\right.
$$

for $\lambda>0$.

These occurrences must:
1.
2.
3.

Examples that could follow a Poisson (λ) distribution:

For X a $\operatorname{Poisson}(\lambda)$ random variable,

$$
\begin{aligned}
\mu & =\mathrm{E} X=\sum_{x=0}^{n} x \frac{e^{-\lambda} \lambda^{x}}{x!}=\lambda \\
\sigma^{2} & =\operatorname{Var} X=\sum_{x=0}^{n}(x-\lambda)^{2} \frac{e^{-\lambda} \lambda^{x}}{x!}=\lambda
\end{aligned}
$$

Example 5.15 (Arrivals at the library). Some students' data indicate that between 12:00 and $12: 10 \mathrm{pm}$ on Monday through Wednesday, an average of around 125 students entered Parks Library at ISU. Consider modeling
$M=$ the number of students entering the ISU library between 12:00 and 12:01pm next Tuesday

Model $M \sim \operatorname{Poisson}(\lambda)$. What would a reasonable choice of λ be?

Under this model, the probability that between 10 and 15 students arrive at the library between 12:00 and 12:01 PM is:

Example 5.16 (Shark attacks). Let X be the number of unprovoked shark attacks that will occur off the coast of Florida next year. Model $X \sim \operatorname{Poisson}(\lambda)$. From the shark data at http://www.flmnh.ufl.edu/fish/sharks/statistics/FLactivity.htm, 246 unprovoked shark attacks occurred from 2000 to 2009.

What would a reasonable choice of λ be?

Under this model, calculate the following:
P [no attacks next year]
P [at least 5 attacks]
P [more than 10 attacks]

