
5.4 Joint distributions and independence (discrete)

Most applications of probability to engineering statistics involve not one but several random

variables. In some cases, the application is intrinsically multivariate.

Example 5.32. Consider the assembly of a ring bearing with nominal inside diameter 1.00

in. on a rod with nominal diameter .99 in. If

X = the ring bearing inside diameter

Y = the rod diameter

One might be interested in

P [there is an interference in assembly] =

Even when a situation is univariate, samples larger than size 1 are essentially always used in

engineering applications. The n data values in a sample are usually thought of as subject to

chance and their simultaneous behavior must then be modeled.

This is actually a very broad and difficult subject, we will only cover a brief introduction to

the topic: jointly discrete random variables.
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5.4.1 Joint distributions

For several discrete random variable, the device typically used to specify probabilities is a

joint probability function. The two-variable version of this is defined.

Definition 5.21. A joint probability function (joint pmf) for discrete random variables X

and Y is a nonnegative function f(x, y), giving the probability that (simultaneously) X takes

the values x and Y takes the values y. That is,

f(x, y) = P [X = x and Y = y]

Properties:

1.

2.

For the discrete case, it is useful to give f(x, y) in a table.
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Example 5.33 (Two bolt torques, cont’d). Recall the example of measure the bolt torques

on the face plates of a heavy equipment component to the nearest integer. With

X = the next torque recorded for bolt 3

Y = the next torque recorded for bolt 4

the joint probability function, f(x, y), is

y\x 11 12 13 14 15 16 17 18 19 20
20 0 0 0 0 0 0 0 2/34 2/34 1/34
19 0 0 0 0 0 0 2/34 0 0 0
18 0 0 1/34 1/34 0 0 1/34 1/34 1/34 0
17 0 0 0 0 2/34 1/34 1/34 2/34 0 0
16 0 0 0 1/34 2/34 2/34 0 0 2/34 0
15 1/34 1/34 0 0 3/34 0 0 0 0 0
14 0 0 0 0 1/34 0 0 2/34 0 0
13 0 0 0 0 1/34 0 0 0 0 0

P [X = 18 and Y = 17]

P [X = 14 and Y = 19]

By summing up certain values of f(x, y), probabilities associated with X and Y with patterns

of interest can be obtained.
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Consider:

P [X ≥ Y ]

y\x 11 12 13 14 15 16 17 18 19 20
20
19
18
17
16
15
14
13

P [|X − Y | ≤ 1]

y\x 11 12 13 14 15 16 17 18 19 20
20
19
18
17
16
15
14
13

P [X = 17]

y\x 11 12 13 14 15 16 17 18 19 20
20
19
18
17
16
15
14
13
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5.4.2 Maginal distributions

In a bivariate problem, once can add down columns in the (two-way) table of f(x, y) to get

values for the probability function of X, fX(x) and across rows in the same table to get

values for the probability distribution of Y , fY (y).

Definition 5.22. The individual probability functions for discrete random variables X and

Y with joint probability function f(x, y) are called marginal probability functions. They are

obtained by summing f(x, y) values over all possible values of the other variable.

fX(x) =
∑

y

f(x, y)

fY (y) =
∑

x

f(x, y)

Example 5.34 (Torques, cont’d). Find the marginal probability functions for X and Y from

the following joint pmf.

y\x 11 12 13 14 15 16 17 18 19 20
20 0 0 0 0 0 0 0 2/34 2/34 1/34
19 0 0 0 0 0 0 2/34 0 0 0
18 0 0 1/34 1/34 0 0 1/34 1/34 1/34 0
17 0 0 0 0 2/34 1/34 1/34 2/34 0 0
16 0 0 0 1/34 2/34 2/34 0 0 2/34 0
15 1/34 1/34 0 0 3/34 0 0 0 0 0
14 0 0 0 0 1/34 0 0 2/34 0 0
13 0 0 0 0 1/34 0 0 0 0 0

57



Getting marginal probability functions from joint probability functions begs the question

whether the process can be reversed. Can we find joint probability functions from

marginal probability functions?

5.4.3 Conditional distributions

When working with several random variables, it is often useful to think about what is expected

of one of the variables, given the values assumed by all others.

Definition 5.23. For discrete random variables X and Y with joint probability function

f(x, y), the conditional probability function of X given Y = y is the function of x

fX|Y (x|y) = f(x, y)
fY (y) = f(x, y)∑

x
f(x, y)

and the conditional probability function of Y given X = x is the function of y

fY |X(y|x) = f(x, y)
fX(x) = f(x, y)∑

y
f(x, y) .
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Example 5.35 (Torque, cont’d). For the torque example with the following joint distribution,

find the following:

1. fY |X(20|18)

2. fY |X(y|15)

3. fY |X(y|20)

4. fX|Y (x|18)

y\x 11 12 13 14 15 16 17 18 19 20 fY (y)
20 0/34 0/34 0/34 0/34 0/34 0/34 0/34 2/34 2/34 1/34 5/34
19 0/34 0/34 0/34 0/34 0/34 0/34 2/34 0/34 0/34 0/34 2/34
18 0/34 0/34 1/34 1/34 0/34 0/34 1/34 1/34 1/34 0/34 5/34
17 0/34 0/34 0/34 0/34 2/34 1/34 1/34 2/34 0/34 0/34 6/34
16 0/34 0/34 0/34 1/34 2/34 2/34 0/34 0/34 2/34 0/34 7/34
15 1/34 1/34 0/34 0/34 3/34 0/34 0/34 0/34 0/34 0/34 5/34
14 0/34 0/34 0/34 0/34 1/34 0/34 0/34 2/34 0/34 0/34 3/34
13 0/34 0/34 0/34 0/34 1/34 0/34 0/34 0/34 0/34 0/34 1/34

fX(x) 1/34 1/34 1/34 2/34 9/34 3/34 4/34 7/34 5/34 1/34 34/34
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5.4.4 Independence

Recall the following joint distribution:

y\x 1 2 3 fY (y)
3 0.08 0.08 0.04 0.20
2 0.16 0.16 0.08 0.40
1 0.16 0.16 0.08 0.40

fX(x) 0.40 0.40 0.20 1.00

What do you notice?

Definition 5.24. Discrete random variables X and Y are independent if their joint distribu-

tion function f(x, y) is the product of their respective marginal probability functions. This

is, independence means that

f(x, y) = fX(x)fY (y) for all x, y.

If this does not hold, then X and Y are dependent.

Alternatively, discrete random variables X and Y are independent if for all x and y,

If X andY are not only independent but also have the same marginal distribution, then they

are independent and identically distributed (iid).
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5.5 Functions of several random variables

We’ve now talked about ways to simultaneously model several random variables. An important

engineering use of that material is in the analysis of system output that are functions of

random inputs.

5.5.1 Linear combinations

For engineering purposes, it often suffices to know the mean and variance for a function

of several random variables, U = g(X1, X2, . . . , Xn) (as opposed to knowing the whole

distribution of U). When g is linear, there are explicit functions.

Proposition 5.1. If X1, X2, . . . , Xn are n independent random variables and a0, a1, . . . , an

are n+ 1 constants, then the random variable U = a0 + a1X1 + a2X2 + · · ·+ anXn has mean

EU = a0 + a1EX1 + a2EX2 + · · ·+ anEX3

and variance

VarU = a2
1EX1 + a2

2EX2 + · · ·+ a2
nEX3
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Example 5.36. Say we have two independent random variables X and Y with EX =

3.3,VarX = 1.91,EY = 25, and VarY = 65. Find the mean and variance for

U = 3 + 2X − 3Y

V = −4X + 3Y

W = 2X − 5Y

Z = −4X − 6Y
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Example 5.37. Say X ∼ Binomial(n = 10, p = 0.5) and Y ∼ Poisson(λ = 3). Calculate

the mean and variance of Z = 5 + 2X − 7Y .
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A particularly important use of Proposition 5.1 concerns n iid random variables where each

ai = 1
n
.

We can find the mean and variance of the random variable

X = 1
n
X1 + · · · 1

n
Xn = 1

n

n∑
i=1

Xi

as they relate to the population parameters µ = EXi and σ2 = VarXi.

For independent variables X1, . . . , Xn with common mean µ and variance σ2,

EX =

VarX =
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Example 5.38 (Seed lengths). One botanist measured the length of 10 seeds from the same

plant. The seed lengths measurements are X1, X2, . . . , X10. Suppose it is known that the

seed lengths are iid with mean µ = 5 mm and variance σ2 = 2mm.

Calculate the mean and variance of the average of 10 seed measurements.

5.5.2 Central limit theorem

One of the most frequently used statistics in engineering applications is the sample mean.

We can relate the mean and variance of the probability distribution of the sample mean to

those of a single observation when an iid model is appropriate.

65



Proposition 5.2. If X1, . . . , Xn are iid random variable (with mean µ and variance σ2),

then for large n, the variable X is approximately normally distributed. That is,

X
·∼ Normal

(
µ,
σ2

n

)

This is one of the most important results in statistics.

Example 5.39 (Tool serial numbers). Consider selecting the last digit of randomly selected

serial numbers of pneumatic tools. Let

W1 = the last digit of the serial number observed next Monday at 9am

W2 = the last digit of the serial number observed the following Monday at 9am

A plausible model for the pair of random variables W1,W2 is that they are independent, each

with the marginal probability function

f(w) =


.1 w = 0, 1, 2, . . . , 9

0 otherwise

0.000

0.025

0.050

0.075

0.100

0.0 2.5 5.0 7.5

w

f(
w

)

With EW = 4.5 and VarW = 8.25.
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Using such a distribution, it is possible to see that W = 1
2(W1 + W2) has probability

distribution

w f(w) w f(w) w f(w) w f(w) w f(w)
0.00 0.01 2.00 0.05 4.00 0.09 6.00 0.07 8 0.03
0.50 0.02 2.50 0.06 4.50 0.10 6.50 0.06 8.5 0.02
1.00 0.03 3.00 0.07 5.00 0.09 7.00 0.05 9 0.01
1.50 0.04 3.50 0.08 5.50 0.08 7.50 0.04

0.000

0.025

0.050

0.075

0.100

0.0 2.5 5.0 7.5
w

f(w
)

Comparing the two distributions, it is clear that even for a completely flat/uniform distribution

ofW and a small sample size of n = 2, the probability distribution ofW looks more bell-shaped

that the underlying distribution.

Now consider larger and larger sample sizes, n = 1, . . . , 40:

Click for video...
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Example 5.40 (Stamp sale time). Imagine you are a stamp salesperson (on eBay). Consider

the time required to complete a stamp sale as S, and let

S = the sample mean time required to complete the next 100 sales

Each individual sale time should have an Exp(α = 16.5s) distribution. We want to consider

approximating P [S > 17].
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Example 5.41 (Cars). Suppose a bunch of cars pass through certain stretch of road.

Whenever a car comes, you look at your watch and record the time. Let Xi be the time

(in minutes) between when the ith car comes and the (i + 1)th car comes for i = 1, . . . , 44.

Suppose you know the average time between cars is 1 minute. Find the probability that the

average time gap between cars exceeds 1.5 minutes.
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Example 5.42 (Baby food jars, cont’d). The process of filling food containers appears to

have an inherent standard deviation of measured fill weights on the order of 1.6g. Suppose

we want to calibrate the filling machine by setting an adjustment knob and filling a run of n

jars. Their sample mean net contents will serve as an indication of the process mean fill level

corresponding to that knob setting.

You want to choose a sample size, n, large enough that there is an 80
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Example 5.43 (Printing mistakes). Suppose the number of printing mistakes on a page

follows some unknown distribution with a mean of 4 and a variance of 9. Assume that number

of printing mistakes on a printed page are iid.

1. What is the approximate probability distribution of the average number of printing

mistakes on 50 pages?

2. Can you find the probability that the number of printing mistakes on a single page is

less than 3.8?

3. Can you find the probability that the average number of printing mistakes on 10 pages

is less than 3.8?

4. Can you find the probability that the average number of printing mistakes on 50 pages

is less than 3.8?
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