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5.4 Joint distributions and independence (discrete) up % Lobi 1+

1 \puk " ‘:l— ﬂ-

V.
Most applications of probability to engineering statistics involve not one but several random

variables. In some cases, the application is intrinsically multivariate.

—————— s

Example 5.32. Consider the assembly of a ring bearing with nominal inside diameter 1.00

in. on a rod with nominal diameter .99 in. If

X = the ring bearing inside diameter

Y = the rod diameter

One might be interested in

Plthere is an interference in assembly| = P E x < YJ

Ls i aSSGML,.l«J tea't Le made
o rod s dhickhes fo. fe r";n-j beanrny AGmeks,
Even when a situation is univariate, samples larger than size 1 are essentially always used in
engineering applications. The n data values in a sample are usually thought of as subject to

chance and their simultaneous behavior must then be modeled.

cach of Mese 05 $u'7J¢-'4'+w chance

=7 nedd do debk ahet e Leley or
St‘mw"mw':j

This is actually a very broad and difficult subject, we will only cover a brief introduction to

the topic: jointly discrete random variables.
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5.4.1 Joint distributions

For several discrete random variable, the device typically used to specify probabilities is a

joint probability function. The two-variable version of this is defined.

Definition 5.21. A joint probability function (joint pmf) for discrete random variables X
and Y is a nonnegative function f(x,y), giving the probability that (simultaneously) X takes
the values x and Y takes the values y. That is,

f(z,y) = P[X =z and Y = 3]

Furdhs

Xwo
o&.\‘ e

Properties:

L £e,9) & (o1 fo- all XYy

0 2 -Q()C,tj) = |

%Y

For the discrete case, it is useful to give f(x,y) in a table.

o4



Example 5.33 (Two bolt torques, cont’d). Recall the example of measure the bolt torques

on the face plates of a heavy equipment component to the nearest integer. With

X = the next torque recorged for bolt 3 roun Jc J .l,,
Y = the next torque recorded for bolt 4 en l\~+"Jw
. 1 . = POX=%, Y=y]
the joint probability function, f(z,y), is
o i
y\sx 11 12 13 14 15 16 17 (18 | 19 20
F 200 0 0 0 0 0 0 (23231 1/n
b w0 o o (o o o 230 |0 o0
18 0 0  1/34 1/34 0 0 1/34 |1/34] 1/34 0
(T 0 o — 0 0 @i 1jad 13 2340 0
0 0 O 1/34 2/34 2/34 0 —to— 2/34 0
15 1/34 1/34 0 0 33 0 0 {0 |0 0
14 0 0 0 0 1/34 0 0 2/341 0 0
13 0 0 0 0 1/34 0 0 & 0 0
S—

PX =18and Y =17 = =
34

PIX=1andY =19 = ()

By summing up certain values of f(x,y), probabilities associated with X and Y with patterns

of interest can be obtained.
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PLX > V)= p(x=t3, Y213M P (x=th Y= 1) + (K= LYSA)

,-j-(l},l';)+-f—(lw 13)+-. +f(2¢ 13) + (x=20,7=3)
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y\x | 11
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t) \.ﬂ‘\ "" = PX-Y|<]] -'f(i?. 13) + .5:(1; M+£(3)3)r .. 400 1)

= (2434 4142+ ]+ l+|4—2+zu+t)

12113 | 14

"Iyv\x [ 11

15
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20
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/

= 17]= .f(”‘;_o').y .+ ;—(,ﬂ‘,l—;)

T T Y

13 | 14

15

16 18 119 | 20

AR KRR K5 ¥

56



5.4.2 Mz{ginal distributions

In a bivariate problem, or\e can add down columns in the (two-way) table of f(x,y) to get

values for the probability function of X, fy(x) and across rows in the same table to get

values for the probability distribution of Y, fy(?;).

Definition 5.22. The individual probability functions for discrete random variables X and

Y with joint probability function f(z,y) are called marginal probability functions. They are

obtained by summing f(z,y) values over all possible values of the other variable.

o 0
d 4”“"”d:)r-

wnchoa o)
J Y

Example 5.34 (Torques, cont’d). Find the marginal probability functions for X and Y from

the following joint pmf.

9131
6/
/31

|

y\x 11 12 13 14 15 16 17 18 19 20 |£,(q
200 0 0 0 0 0 0  2/34 2/34 1/34| s/
90 0 0 0 0 0 230 0 0 |23
18 0 0  1/34 1/34 0 0  1/34 1/34 1/34 0
17 0 0 0 0  2/3¢ 1/34 1/34 2/34 0 0
16 0 0 0  1/34 2/34 2/34 0 0  2/34 0
15 1/34 1/34 0 0 3/34 v 0 0 0 0 |S/3
4 0 0 0 0 1/3a 0 0 2/3 0 0
30 0 0 0O 1/3a 0 0 0 0 0
W Lo = L3 v o s L

’S'g 3 31 M 24 I by 54 3y .34 ™ ‘
ly)
x ﬂl lil’ N

— ’h-‘ . L‘L

So M| Y 13 [ /34 o gl prebeb
ol VA 19 [3/3n fodims for X a-d)
13 | i -
1$ | 2/14 1 | 743
1p |3/34 17 | 6/31
o KT B
g 5o 20 |85
| 3 A




Getting marginal probability functions from joint probability functions begs the question

whether the process can be reversed. Can we find joint probability functions from

marginal probability functions? Nd! ( Somd\fu's vas} More ld{,‘,—)

lorrder X ok ¥ witn Joirt Aishibutvas

N Some micyiuds

3 |16 -tk .03 | but effsat joints |

A6 «lb 081 =St N.a,s.th"y
7? 0§ .ok oy re wyes )omn"—fm

L \ijfhif

Moo v
N I PR wlonte
5.4.3 Conditional distributions (L./L need a.Jol;{-\ b.na!
&.S(um‘o‘h“ﬂi)

When working with several random variables, it is often useful to think about what is expected

of one of the variables, given the values assumed by all others.
For ey&»'vl'-; i~ M !)Ou "'"1"‘ Cxam lg, jou euaLf‘ o Ld,,(, Seme
Cgrcy*ﬂ'l'“hs fo, Lpl"- H 'l'9r1vc t:f ow kvow b, lr 3 +eole \S §+ 18

do (o8

Definition 5.23. For discrete random variables X and Y with joint probability function

f(z,y), the conditional probability function of X given Y =y is the function of z

flxy)  fy goint

_ Y _ ) - e —
f@(m|y)— Ty (y) B ;f(xay) - wxﬁfg.’u.l ’F y

XY “X qven ¥
and the conditional probability function of Y given X = x is the function of y

f(x,y) _ f(xvy) = J.on’»-r
fx(@) L f@y) S oF %

fyix(ylz) =
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Example 5.35 (Torque, cont’d). For the torque example with the following joint distribution,

find the following:

$£Qg,20) /34 _ o
- Jyix = P(1=20 giv X‘—‘IQ): - - 2
1. frix(20[18)= P 9 5,015 5/ =

2. fyx(y[15)
3. fyix(y[20)

yo 11 12 13 1 /1 16 17 18 19 20 [ /()
20 0/34 0/34 0/34 0/34 0/34\ 0/34 0/34 2/34 2/34 1/34| 5/34
19  0/34 0/34 0/34 0/34 0/34 2/34 0/34 0/34 0/34| 2/34
—>18 0/34 0/34 1/34 _1/3410/34 |0/34 1/34 1/34 1/34 0/34| 5/34
17 0/34 0/34 0/34 0/34|2/34 [1/34 1/34 2/34 0/34 0/34| 6/34
16 0/34 0/34 0/34 1/34|2/34 [2/34 0/34 0/34 2/34 0/34| 7/34
15 1/34 1/34 0/34 0/34]3/34[0/34 0/34 0/34 0/34 0/34| 5/34
14 0/34 0/34 0/34 0/34\1/3410/34 0/34 2/34 0/34 0/34| 3/34
13 0/34 0/34 0/34 0/34 \1/34)0/34 0/34 0/34 0/34 0/34] 1/34
Sx(x) 1/34 1/34 1/34 2/34 O/38 3/34 4/34 (/34 5/34 1/34|34/34
s — e

(y115) = £0s,9) 9| S0 Fux(9122)
2. Ty -g-x(m) (3 | “*so=< o
o (e h| 3
§(20,9 3y/(al30= 39
I'LO) 16 \eppsasz = 2'/" o
3. %m{j (1,0) |7 |t/3+/C/34) *2/"'1 o
1 |9 /tass) =0 | ©
19 J o (@)
2.0 o \/’ (\7, W =
1.4, =TT x| fy Y1)
n |8
13 Vh/($/3~.) = <
" /(550 =
s o
l¢ | O

I+ y%‘\ / (f/ 3'1)
] 3/ ( $/ﬁb~{j
19 1 Y34/ (s
210
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5.4.4 Independence

Recall the following joint distribution:

e 12 3 /(Y
3 0.08 0.08 0.04| 0.20
0.16 0.16 0.08 | 0.40

1 0.16 0.16 0.08 | 0.40
fX(x) 0.40 0.40 0.20| 1.00

What do you notice?

Each PLx=x,7=y]= PL¥ =x) PLv=y]

_ 1By
Mso,  §,(913)= o) 7

XK

e ¥nowing whil uela X s, down't bk '1" queshins chot 7!

—2?Definition 5.24. Discrete random variables X and Y are independent if their joint distribu-
NAEPENGENT
tion function f(z,y) is the product of their respective marginal probability functions. This N
is, independence means that &“w‘Y‘ ¢ i@”
ﬂ\,\% 0 ()
I’[X-.x,‘im} flz.y) = fx(@)fy(y)  forallz,y. = N
If this does not hold, then X and Y are dependent. -

— Alternatively, discrete random variables X and Y are independent if for all z and v,
]
£ OPI= £,6) and FiyGen)? 509

If X andY are not only independent but also have the same marginal distribution, then they

are independent and identically distributed (iid).
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5.5 Functions of several random variables Wt Al

We’ve now talked about ways to simultaneously model several random variables. An important
engineering use of that material is in the analysis of system output that are functions of

random inputs.

5.5.1 Linear combinations

For engineering purposes, it often suffices to know the mean and variance for a function
of several random variables, U = ¢(X;, Xs,...,X,) (as opposed to knowing the whole

distribution of U). When g is linear, there are explicit functions.

Proposition 5.1. If X1, Xs, ..., X,, are n jndependent random variables and ag, aq, ..., a,
are n + 1 constants, then the random variable U = ag + a1 X1 + asXs + - - - + a, X,, has mean
W s a linew (ombination of %uy-- ¥a
EU = ag+ a1 EX1 + a2 EXo + -+ + 0, EXpy €= Ay holds 2ye, ‘1:
Ky-r¥a &re f_ﬁff

and variance Ver Vor l"‘d‘-r'-»M.
VarU = al@(l + a2@(2 +- @(

vdeaw © praos .
R, n=2  jolut lamﬁ.gl, Hj Sahen £, %) = PD(, x.)x&’x?-]

De e U. = Qo"'alxt 4—0\7_)(,_
EW= E[a,,-r ﬁ,k,""‘az.xz-]
2 2 (a 40, +apc,) §(x,,%,)

'F.x,L
x, §x, %)
= —%; ao Hx G+ z%(x. G) A—xzxzzqz_ ¥, 50
A 2\ x s_('x Y) X3
i £, (x)

Q.

EX:, = ap*alExl* al Ex ‘
Chedt 0n Your 0wn, same vdees hold fo, VarU= a2Var X, + a2 Ver X, .~



Example 5.36. Say we have two independent random variables X and Y with EX =
3.3, VarX = 1.91,EY = 25, and VarY = 65. Find the mean and variance for

U=3+2X-3Y

V=—-4X +3Y
W =2X —5Y
7 = —4X —6Y

eu=€(3+2x-3Y)
= 3 4 2E% ~3EY
=3 ¥2(33) -3(25) = -€5.4

EV = g(~4x+3Y)
= —yex +E7
=4y(33)+305)=¢CLY
ew= E(2X-5Y)

=AEX-SEY
=2 (33) —-S(29)= =¥y

gz = el-1x—CY]
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Ve Wz Var (3 +2%-3¥)
= 2*VaX +(3) Ve Y
= 4(1a1) +4(c5)=592. 44

\,“‘V-:' Vear (-"IX+3‘[)
= (O VX & N Y
= 16(1a) +9q65)= b5 .56

Ve = Var (2% -5Y)
= 2" Ve X + (F§)tVer
=g Cral)+ 25(45)= 1632.64

Ve T = Ve (=YY -6Y)
= CW) VeX + H) vy

= 16(141) T 36(C5)-
2370.56



~
Example 5.37. Say X ~ Binomial(n = 10,p = 0.5) and Y ~ Poisson(\ = 3). Calculate
the mean and variance of Z =5+ 2X — 7Y

Flr}* ﬁ'."‘
EX:n-r:’lO-O.S =5
Nor X = h‘r(l-r) =10:-0.§-0.6=12.65

EV=2=3
VarY = A=3
T EZ-= E(5+2%- 7Y)
= 64 LEX -FEY
= g+ 2(5) —7()
= -¢

Nor 22 Vo (S 4 2x=7Y)
= ¥V X 4 Pt Ve ) .
= 4(2.9) +ua(y)
= \t;q-'
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A particularly important use of Proposition 5.1 concerns n@random variables where each

_ 1 :
ai—m for (:-l’,_,n

Xl,--,x,, wre r,o-\c.cp-l-.JA-J 417.'\:«1«1'4-« revdon Sledhs (L ryéu...d")‘ﬁvw.
a St% huﬂv"ﬂ.‘d' Po lld:&

We can find the mean and variance of the random variable

\e een
@: 1+...7Xn:7ZX’L x.,,,‘) ”
n ni= | ted
i s
. / E‘KE’ :E_Xn ‘-/A. 2
as they relate to the population parameters ;. = EX; and 0% = VarX;. NerX = 2\ ®a” €
&l Ay
For independent variables X7, ..., X,, with common mean p and variance o2,
B - Bl X wx]
-— \
= —EX, EX“ (‘:rc{o S I)
=l parTpm
w erms

jj"' .t-:t‘s!pfn.d V-va- o‘[ e Scws("-f- meon ‘3 poru'ﬁ.""-- M-Léean,

#VarX: Var ['l;)(i +...*";X.-ll _
- &)1 ‘{c./\(.r? L+ (J;) Ve, X, (rn‘. 5.1)

\
"-—-"L.I-_"I'—.‘_pl

- 1 n

e Vari ence of P semple mean fo- @ Semple of 2 0 5 R ,o.,,.ua-.
\ente Al gd Lv, he SGVYI‘ 5%4%(.

- a8t SC.MPL( S 1 gros, e erab ik of 4o Semple mesn decreg sts.



Example 5.38 (Seed lengths). One botanist measured the length of 10 seeds from the same
plant. The seed lengths measurements are Xq, Xo,..., Xj9. Suppose it is known that the

seed lengths are iid with mean p = 5 mm and variance o2 = 2mm.

Calculate the mean and variance of the average of 10 seed measurements.

X = avernge of 10 measurements

- | e
— — X.
lo ; '

5.5.2 Central limit theorem

One of the most frequently used statistics in engineering applications is the sample mean.

Jecaton) (spreed)

We can relate fhe mean and variance of the probability distribution of the sample mean to
those of a single observation when an iid model is appropriate.

‘ﬁ ';n A cann ﬂ{' '*“- Swl{ MLM/ !‘{_ [ . S(mrlg. f:‘-?c. ‘\S 'Cfgt
e""’D‘”l we Can a\S& anomx.‘mk. e ;L\ﬁﬁt o{- ’h-u‘o(‘v"a‘.il;‘]?

0\&‘)‘\'1'.\9\»*".0!\ D{' e S‘-/'P'L n-.e‘,,,!
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Proposition 5.2. If X, ..
then for large n, the variable(__s_( is approximately normally distributed. That is,

r .‘ N
® n22S TR
s

., X,, are iid random variable (with mean p and variance o?),

This is one of the most important results in statistics.

Example 5.39 (Tool serial numbers). Consider selecting the last digit of randomly selected

serial numbers of pneumatic tools. Let

W1 = the last digit of the serial number observed next Monday at 9am

W5 = the last digit of the serial number observed the following Monday at 9am

A plausible model for the pair of random variables I, W5 is that they are independeny, each

with the marginal probability function

1 w=0,1,2,...,9 wnkor A
f(w): Vs (

0 otherwise

0.100-
0.075-
3 0.050]
=
0.025-
O.OOO- T T T T
0.0 25 5.0 75

w

With EW = 4.5 and VarWW = 8.25.
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Using such a distribution, it is possible to see that W = £(W; + Ws) has probability

distribution

v )| w f@| v f@| w [fw|w [
0.00 0.01 [2.00 0.05 [4.00 0.09 [6.00 0.07 [ 8 0.03
0.50 0.02 [2.50 0.06 |4.50 0.10 | 6.50 0.06 | 8.5 0.02
1.00  0.03 | 3.00 0.07 |5.00 0.09 |7.00 005| 9 001
1.50 0.04 | 3.50 0.08 |5.50 0.08 | 7.50 0.04

Lgw=45  Var W= "43'5/1 =425

0.100+

0.0754
0.0501
N , . L1
0.0 25 I 5o 75
W

Comparing the two distributions, it is clear that even for a completely flat/uniform distribution

f(w)

of W and a small sample size of n = 2, the probability distribution of W looks more bell-shaped
thafythe underlying distribution.

Now consider larger and larger sample sizes, n = 1,....40: mal loot at he dﬁ)"\-'vw‘l\h

of 1w sample meen for lerges and sarmples,

Click for video...
Ol\l llu, .

=~ ~ $.25
W will a,\ww)t, Waee EVL= ‘!,5‘/ VarW = —p

QI\A accr'oﬁ.ullls movl;‘a'l“*, «us h""'"? 0°.
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Example 5.40 (Stamp sale time). Imagine you are a stamp salesperson (on eBay). Consider

the time required to complete a stamp sale as S, and let

“loo 225
® oo

S = the sample mean time required to complete the next 100 sales

Each individual sale time should have an Exp(a = 16.5s) distribution. We want to consider

approximatin
)

ol .
uf’"d;‘\& Si ;\' E“f(lb.s) l:-'-l‘--', ‘00

m=ESi=[t5 } fo, 12 00 Ciid)
=VerS; = 14,672 27215
— ES:=ILS
\lar§: 23225 _ 2-7F LS
100

Since n< 100 315,

s .onCics, 23225 = 1.65%)

P(5 > 19)= f( ,‘.; E‘H%)

P(B v o) S TN 5T

f !% = |- p(2s¢ 0.363)
203 = |- E((’.‘S"-ﬁ)
~ | — 0. f.'l‘q' (a-F leas'l')

0.3 33
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Example 5.41 (Cars). Suppose a bunch of cars pass through certain stretch of road.
Whenever a car comes, you look at your watch and record the time. Let X; be the time
(in minutes) between when the i*" car comes and the (i + 1) car comes for i = 1,...,44.
Suppose you know the average time between cars is 1 minute. Find the probability that the
average time gap between cars exceeds '“ minutes.

,‘/:r ntx* ‘1“1 Cerl
X; T 4ine Vn miavits hetrwanm v e d (CAYH e

1id
=2 X ~ E){fa (d)) whe of = Sov T PP

Z)‘ (a.,f.rkcr- 9ap Lehen Cos do- Yy Ccr;)

lm iz

ved (X >1.05)

Lt

><l

= Y= | .
’\‘u} - E?: | h;HH?lS:’? SZ,QN('IE)
Vor X = uq
— )_._ ( log-:l__
P()(‘?\,Dg B JT/T:‘ IV /a1
Y P27 0w 2w S
;u:;;‘%).}w z F(Z— > @‘511) (a‘Heu‘A')
3T

= \-pP(zgo0.34)

<= | = F(o.34)
= |- 0.£33) = 0.3¢¢69

169

=1 27§



Example 5.42 (Baby food jars, cont’d). The process of filling food containers appears to
have an inherent standard deviation of measured fill weights on the order of 1.6g. Suppose
we want to calibrate the filling machine by setting an adjustment knob and filling a run of n
jars. Their sample mean net contents will serve as an indication of the process mean fill level

corresponding to that knob setting.

You want to choose a sample size, n, large enough that there is an 80% G‘lﬁn(e 'h"-

sﬁmfl“ Mmeen 'S Wefwin 0‘33 uf He ached r(pccﬂ MEGA.

Ve Uﬁr\* do choose N swh ot .
(0.5 = P[%-o.'s < X ﬁ/.n.-i-o.'BJ

et X; = Ao weight of 4 5un assvac
—5(- — A SG\MP'{. meE€etn M'\ﬁl‘f c’: (o) \)“r{'

F.r nw l"'j‘- ’-‘\"'DL ("?25)) we ,ékaw M
N ,:.»N(/*,-%:) Ve 6tz 142 (Byein, we dond Prow o)
L = v [ E 1S
Ne ¥ === => St devX = |5==

0.9=0[ 83 <X £mro))
<

'-l

= M =03~ < (SZZ)‘ Mm+0.3=m
o < =
Gl
ok
koo 2~ N(o,) G ~21%)
pl-2L <2< @'3] VTS T L, e
03 _g“' l.'r/fn = - l"/ﬁ‘
- 362 - 23
- o - X\ \w/sa . =2)=N
)~ 2 (86933)

—\ a b . L
T ] TG - [-2GR) (o)
| ) Yz.
o o T RN, s LT |
= .3
e DT g )

-



Example 5.43 (Printing mistakes). Suppose the number of printing mistakes on a page
follows some unknown distribution with a mean of 4 and a variance of 9. Assume that number

of printing mistakes on a printed page are iid.

1. What is the approximate probability distribution of the average number of printing

mistakes on 50 pages?

n=50 _?_, 25

-5-(’:’ N( H’ '50) e havt (id deta.

N\— 2. Can you find the probability that the number of printing mistakes on a single page is
less than 3.87

No ) ‘:ecmst 't‘* cﬁ!;al; L"J Olls"’nl;dwa °f # o-F- Fm‘ ‘g

m" mistake en @ .‘ le P9 © (5 VUnkasin.

3. Can you find the probability that the average number of printing mistakes on 10 pages

is less than 3.87

No, Lutame N=10 < 25 , S0 he CLT Connet Lo wsad
TLV“, 4“' dﬁ\S‘\'r{'fL..ft‘oﬂ a‘; 7 I\S \Dnb“om.

4. Can you find the probability that the average number of printing mistakes on 50 pages

is less than 3.87

Mes, Le conne
_ - pfX=H 3.8-1
?(Y <3'8) - F( Ya/so < J'a’/_{o)

N P(R<-017314)
~ B -m9) “atlest
71

< 6.315¢6

h> 50725 o-—"l‘ )(, iod. XMN(U', Se
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