5.4 Joint distributions and independence (discrete)

Most applications of probability to engineering statistics involve not one but several random variables. In some cases, the application is intrinsically multivariate.

Example 5.32. Consider the assembly of a ring bearing with nominal inside diameter 1.00 in. on a rod with nominal diameter . 99 in. If

$$
\begin{aligned}
& X=\text { the ring bearing inside diameter } \\
& Y=\text { the rod diameter }
\end{aligned}
$$

One might be interested in

$$
\begin{aligned}
& P[\text { there is an interference in assembly }]=P[X<Y] \\
& L \text { the assembly con't be made } \\
& \text { if the rod is thicker then the ring bearing diameter. }
\end{aligned}
$$

Even when a situation is univariate, samples larger than size 1 are essentially always used in engineering applications. The n data values in a sample are usually thought of as subject to chance and their simultaneous behavior must then be modeled.

This is actually a very broad and difficult subject, we will only cover a brief introduction to the topic: jointly discrete random variables.

5.4.1 Joint distributions

For several discrete random variable, the device typically used to specify probabilities is a joint probability function. The two-variable version of this is defined.

Definition 5.21. A joint probability function (joint pmf) for discrete random variables X and Y is a nonnegative function $f(x, y)$, giving the probability that (simultaneously) X takes the values x and Y takes the values y. That is,

$$
\begin{aligned}
& f(x, y)=P[X=x \text { and } Y=y] \\
& \text { function } \\
& \text { of two } \\
& \text { values }
\end{aligned}
$$

Properties:

1. $f(x, y) \in[0,1]$ for all x, y
2. $\sum_{x, y} f(x, y)=1$

For the discrete case, it is useful to give $f(x, y)$ in a table.

Example 5.33 (Two bolt torques, cont'd). Recall the example of measure the bolt torques on the face plates of a heavy equipment component to the nearest integer. With

the joint probability function, $f(x, y)$, is

\boldsymbol{y}| $\boldsymbol{x} \rightarrow$ | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| y | | | | | | | | | | |
| y | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $2 / 34$ | $2 / 34$ | $1 / 34$ |
| 19 | 0 | 0 | 0 | 0 | 0 | 0 | $2 / 34$ | 0 | 0 | 0 |
| 18 | 0 | 0 | $1 / 34$ | $1 / 34$ | 0 | 0 | $1 / 34$ | $1 / 34$ | $1 / 34$ | 0 |
| 17 | 0 | 0 | 0 | 0 | $2 / 34$ | $1 / 34$ | $1 / 34$ | $2 / 34$ | 0 | 0 |
| 16 | 0 | 0 | 0 | $1 / 34$ | $2 / 34$ | $2 / 34$ | 0 | 0 | $2 / 34$ | 0 |
| 15 | $1 / 34$ | $1 / 34$ | 0 | 0 | $3 / 34$ | 0 | 0 | 0 | 0 | 0 |
| 14 | 0 | 0 | 0 | 0 | $1 / 34$ | 0 | 0 | $2 / 34$ | 0 | 0 |
| 13 | 0 | 0 | 0 | 0 | $1 / 34$ | 0 | 0 | | 0 | 0 |

$$
P[X=18 \text { and } Y=17]=\frac{2}{34}
$$

$$
P[X=14 \text { and } Y=19]=0
$$

By summing up certain values of $f(x, y)$, probabilities associated with X and Y with patterns of interest can be obtained.

Consider:

$\mathrm{y} \backslash \mathrm{x}$	11	12	13	14	15	16	17	18	19	20
20										\mathbf{x}
19									\mathbf{x}	\mathbf{x}
18								\mathbf{x}	\mathbf{x}	\mathbf{x}
17							\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}
16						\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}
15					\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}
14				\mathbf{x}						
13			\mathbf{x}							
$\mathbf{3 4}$										
$2+2+1+2+1+1+$										

$$
\begin{aligned}
& \text { p(6its eqios } \\
& \text { of torare }=P[X=17]=f(17,20)+\ldots+f(17,13) \\
&=\frac{2}{34}+\frac{1}{34}+\frac{1}{34}=\frac{4}{34}
\end{aligned}
$$

$$
\text { (loits of } \quad=\frac{2}{34}+\frac{1}{34}+\frac{1}{34}=\frac{4}{34}
$$

5.4.2 Marginal distributions

this is called "marginalization" because we put the result in the margins of the table (really).

In a bivariate problem, on fe can add down columns in the (two-way) table of $f(x, y)$ to get values for the probability function of $X, f_{X}(x)$ and across rows in the same table to get values for the probability distribution of $Y, f_{Y}(\dot{y})$.

Definition 5.22. The individual probability functions for discrete random variables X and Y with joint probability function $f(x, y)$ are called marginal probability functions. They are obtained by summing $f(x, y)$ values over all possible values of the other variable.

Example 5.34 (Torques, cont'd). Find the marginal probability functions for X and Y from the following joint mf.

$\mathrm{y} \backslash \mathrm{x}$	11	12	13	14	15	16	17	18	19	20	$f_{y}(y)$
20	0	0	0	0	0	0	0	$2 / 34$	$2 / 34$	$1 / 34$	$\mathbf{5 / 3 4}$
19	0	0	0	0	0	0	$2 / 34$	0	0	0	$\mathbf{2 / 3 4}$
18	0	0	$1 / 34$	$1 / 34$	0	0	$1 / 34$	$1 / 34$	$1 / 34$	0	$\mathbf{5 1 3 4}$
17	0	0	0	0	$2 / 34$	$1 / 34$	$1 / 34$	$2 / 34$	0	0	$\mathbf{6 / 3 4}$
16	0	0	0	$1 / 34$	$2 / 34$	$2 / 34$	0	0	$2 / 34$	0	$\mathbf{7 / 3 4}$
15	$1 / 34$	$1 / 34$	0	0	$3 / 34$	01	0	0	0	0	$\mathbf{5 / 3 4}$
14	0	0	0	0	$1 / 34$	0	0	$2 / 34$	0	0	$\mathbf{3 / 3 4}$
13	0	0	0	0	$1 / 34$	0	0	0	0	0	$1 / 34$
$\boldsymbol{f}_{\boldsymbol{x}}(\boldsymbol{x})$	$\frac{1}{\mathbf{3 4}}$	$\frac{1}{\mathbf{3 4}}$	$\frac{1}{\mathbf{3 4}}$	$\frac{\mathbf{2}}{\mathbf{3 4}}$	$\frac{\mathbf{9}}{\mathbf{3 4}}$	$\frac{\mathbf{3}}{\mathbf{3 4}}$	$\frac{\mathbf{4}}{\mathbf{3 4}}$	$\frac{\mathbf{7}}{\mathbf{3 4}}$	$\frac{\mathbf{5}}{\mathbf{3 4}}$	$\frac{1}{\mathbf{3 4}}$	

So | x | $f(x)$ | | |
| :--- | :--- | :--- | :--- |
| 11 | $1 / 34$ | y | $f_{y}(y)$ |
| 12 | $1 / 34$ | 13 | $1 / 34$ |
| 13 | $1 / 34$ | 14 | $3 / 34$ |
| 14 | $2 / 34$ | 15 | $5 / 34$ |
| 15 | $9 / 34$ | 16 | $7 / 34$ |
| 16 | $3 / 34$ | 17 | $6 / 34$ |
| 17 | $4 / 34$ | 18 | $5 / 34$ |
| 18 | $7 / 34$ | 19 | $2 / 34$ |
| 19 | 5134 | 20 | $5 / 34$ |
| 20 | $1 / 34$ | | |

Getting marginal probability functions from joint probability functions begs the question whether the process can be reversed. Can we find joint probability functions from marginal probability functions? No! (Sometimes yes, more later) consider x and y with joint distributions

5.4.3 Conditional distributions

When working with several random variables, it is often useful to think about what is expected of one of the variables, given the values assumed by all others.
For example, in the bolt torque example, you ought to hare some expectations for bolt 4 torque if yon know bolt 3 took 15 ft 1 b to loosen.

Definition 5.23. For discrete random variables X and Y with joint probability function $f(x, y)$, the conditional probability function of X given $Y=y$ is the function of x
$x \mid y$ " x given y "

$$
f\left(X \left\lvert\, Y(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}=\frac{f(x, y)}{\sum_{x} f(x, y)}=\frac{\text { joint }}{\text { marginal of } \mathbf{Y}}\right.\right.
$$

and the conditional probability function of Y given $X=x$ is the function of y

$$
f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f_{X}(x)}=\frac{f(x, y)}{\sum_{y} f(x, y)}=\frac{\text { joint }}{\text { marginal of } \boldsymbol{X}}
$$

Example 5.35 (Torque, cont'd). For the torque example with the following joint distribution, find the following:

1. $f_{Y \mid X}(20 \mid 18)=p(y=20$ given $x=18)=\frac{f(18,20)}{f_{X}(18)}=\frac{2 / 34}{7 / 34}=\frac{2}{7}$
2. $f_{Y \mid X}(y \mid 15)$
3. $f_{Y \mid X}(y \mid 20)$
4. $f_{X \mid Y}(x \mid 18)$

$y \backslash x$	11	12	13	14	15	16	17	18	19	20	$f_{Y}(y)$
20	$0 / 34$	$0 / 34$	$0 / 34$	$0 / 34$	$0 / 34$	$0 / 34$	$0 / 34$	$2 / 34$	$2 / 34$	$1 / 34$	$5 / 34$
19	$0 / 34$	$0 / 34$	$0 / 34$	$0 / 34$	$0 / 34$	$0 / 34$	$2 / 34$	$0 / 34$	$0 / 34$	$0 / 34$	$2 / 34$
$\rightarrow 18$	$0 / 34$	$0 / 34$	$1 / 34$	$1 / 34$	$0 / 34$	$0 / 34$	$1 / 34$	$1 / 34$	$1 / 34$	$0 / 34$	$5 / 34$
17	$0 / 34$	$0 / 34$	$0 / 34$	$0 / 34$	$2 / 34$	$1 / 34$	$1 / 34$	$2 / 34$	$0 / 34$	$0 / 34$	$6 / 34$
16	$0 / 34$	$0 / 34$	$0 / 34$	$1 / 34$	$2 / 34$	$2 / 34$	$0 / 34$	$0 / 34$	$2 / 34$	$0 / 34$	$7 / 34$
15	$1 / 34$	$1 / 34$	$0 / 34$	$0 / 34$	$3 / 34$	$0 / 34$	$0 / 34$	$0 / 34$	$0 / 34$	$0 / 34$	$5 / 34$
14	$0 / 34$	$0 / 34$	$0 / 34$	$0 / 34$	$1 / 34$	$0 / 34$	$0 / 34$	$2 / 34$	$0 / 34$	$0 / 34$	$3 / 34$
13	$0 / 34$	$0 / 34$	$0 / 34$	$0 / 34$	$1 / 34$	$0 / 34$	$0 / 34$	$0 / 34$	$0 / 34$	$0 / 34$	$1 / 34$
$f_{X}(x)$	$1 / 34$	$1 / 34$	$1 / 34$	$2 / 34$	$4 / 34$	$3 / 34$	$4 / 34$	$7 / 34$	$5 / 34$	$1 / 34$	$34 / 34$

2. $f_{y \mid x}(y \mid 15)=\frac{f(15, y)}{f_{x}(15)}$
3. $f_{y \mid x}(y \mid 20)=\frac{f(20, y)}{f_{x}(20)}$
4. $f_{x \mid y}(x \mid 18)=\frac{f(x, 18)}{f_{y}(18)}$

y	$f_{y / x}(y / 15)$	$f_{y 1 x}(y / 20)$
13	$1 / 34 /(9 / 34)=\frac{1}{9}$	0
14	$1 / 34 /(9 / 34)=\frac{1}{9}$	0
15	$3 / 34 /(9(34)=3 / 9$	0
16	$2 / 4 /(9 / 34)=2 / 9$	0
17	$2 / 34 /(9 / 34)=2 / 9$	0
18	$0 / 34 /(9 / 34)=0$	0
19		0
20		0
		$1 / 34 /(1 / 34)=1$

x	$f_{x / y}(x \mid y=18)$
11	0
12	0
13	$1 / 34 /(5 / 34)=\frac{1}{5}$
14	$1 / 3 /(5 / 34)=\frac{1}{5}$
15	0
16	0
17	$y / 34 /(5 / 34)=\frac{1}{5}$
18	$1 / 34 /(5 / 34)=\frac{1}{5}$
19	$1 / 34 /(5 / 34)=\frac{1}{5}$
20	0

5.4.4 Independence

Recall the following joint distribution:

$y \backslash x$	1	2	3	$f_{Y}(y)$
3	0.08	0.08	0.04	0.20
2	0.16	0.16	0.08	0.40
1	0.16	0.16	0.08	0.40
$f_{X}(x)$	0.40	0.40	0.20	1.00

What do you notice?
Each $P[X=x, y=y]=P[X=x] P[y=y]$

Also, $f_{y \mid x}(y \mid 3)=\frac{f(3, y)}{f_{x}(3)} \Rightarrow$| y | $f_{y x}(y \mid 3)$ |
| :--- | :--- |
| | $.08 / 2==1$ |
| 2 | $08 / 2=1$ |
| 3 | $04 / 2=2=0.2$ |

So, $f_{y \mid x}(y \mid 3)=f_{y}(y)$. Actually, this is the for cull of x.
ie. Knowing what vale X takes, doesn't matter in questions about Y !
\rightarrow Definition 5.24. Discrete random variables X and Y are independent if their joint distribudion function $f(x, y)$ is the product of their respective marginal probability functions. This is, independence means that

$$
\begin{aligned}
& \mathbf{P}[\boldsymbol{X}=\boldsymbol{x}, \boldsymbol{y}=y)=f(x, y)=f_{X}(x) f_{Y}(y) \quad \text { for all } x, y . \\
&=\boldsymbol{P}[\mathbf{X}=\boldsymbol{x}] \boldsymbol{p}(\boldsymbol{y}=\boldsymbol{y}] \text { (for discrete) }
\end{aligned}
$$

If this does not hold, then X and Y are dependent.
Alternatively, discrete random variables X and Y are independent if for all x and y,

$$
f_{y l x}(y \mid x)=f_{y}(y) \text { and } f_{x \mid y}(x, y)=f_{x}(x)
$$

If X and Y are not only independent but also have the same marginal distribution, then they are independent and identically distributed (id).

5.5 Functions of several random variables

We've now talked about ways to simultaneously model several random variables. An important engineering use of that material is in the analysis of system output that are functions of random inputs.

5.5.1 Linear combinations

For engineering purposes, it often suffices to know the mean and variance for a function of several random variables, $U=g\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ (as opposed to knowing the whole distribution of $U)$. When g is linear, there are explicit functions.

Proposition 5.1. If $X_{1}, X_{2}, \ldots, X_{n}$ are n independent random variables and $a_{0}, a_{1}, \ldots, a_{n}$ are $n+1$ constants, then the random variable $U=a_{0}+a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n}$ has mean
u is a line combination of $x_{11} \ldots, x_{n}$ $E U=a_{0}+a_{1} E X_{1}+a_{2} E X_{2}+\cdots+a_{n} E X_{\mathbf{n}} \leftarrow$ this holds even if x_{1}, \ldots, x_{n} are not
and variance

$$
\underset{\operatorname{Var} U=a_{1}^{2} \text { Var } \mathrm{X}_{1}+a_{2}^{2} \mathrm{Var}_{2}+\cdots+a_{n}^{2} \mathrm{Xar}_{3}}{\text { Var }}
$$

idea of proof:
For $n=2$ joint probability function $f\left(x_{1}, x_{2}\right)=P\left[x_{1}=x_{1}, x_{2}=x_{2}\right]$.
Define $U=a_{0}+a_{1} x_{1}+a_{2} x_{2}$
$E U=E\left[a_{0}+a_{1} x_{1}+a_{2} x_{2}\right]$

$$
=\sum_{x_{1}} \sum_{x_{2}}\left(a_{0}+a_{1} x_{1}+a_{2} x_{2}\right) f\left(x_{1}, x_{2}\right)
$$

Chads on your own, sane ideas hold for $\operatorname{Var} U=a_{1}^{2} \operatorname{Var} X_{1}+a_{2}^{2} \operatorname{Var} X_{2} \cdot / /$

Example 5.36. Say we have two independent random variables X and Y with $\mathrm{E} X=$ 3.3, $\operatorname{Var} X=1.91, \mathrm{E} Y=25$, and $\operatorname{Var} Y=65$. Find the mean and variance for

$$
\begin{aligned}
U & =3+2 X-3 Y \\
V & =-4 X+3 Y \\
W & =2 X-5 Y \\
Z & =-4 X-6 Y
\end{aligned}
$$

$$
\begin{aligned}
E U & =E(3+2 x-3 y) \\
& =3+2 E x-3 E y \\
& =3+2(3.3)-3(25)=-65.4
\end{aligned}
$$

$$
\begin{aligned}
E V & =E(-4 x+3 y) \\
& =-4 E x+3 E y \\
& =-4(3.3)+3(25)=61.8 \\
E W & =E(2 x-5 y) \\
& =2 E x-5 E y \\
& =2(3.3)-5(25)=-118.4
\end{aligned}
$$

$$
\begin{aligned}
E Z & =E[-4 x-6 y] \\
& =-4 E x-6 E Y \\
& =-4(3.3)-6(25)=-163.2
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{var} u & =\operatorname{Var}(3+2 x-3 y) \\
& =2^{2} \operatorname{Var} x+(-3)^{2} \operatorname{Var} y \\
& =4(1.91)+9(65)=592.64
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var} V & =\operatorname{Var}(-4 x+3 y) \\
& =(-4)^{2} \operatorname{Var} x+3^{2} \operatorname{Var} y \\
& =16(1.91)+9(65)=615.56
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var} W & =\operatorname{Var}(2 x-5 y) \\
& =2^{2} \operatorname{Vax}+(-5)^{2} \operatorname{Var} \\
& =4(1.91)+25(65)=1632.64
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var} z & =\operatorname{Var}(-4 x-64) \\
& =(-4)^{2} \operatorname{Var} x+(-6)^{2} \operatorname{Var} y \\
& =16(1.91)+36(65)=
\end{aligned}
$$

2370.56

Example 5.37. Say $X \sim \operatorname{Binomial}(n=10, p=0.5)$ and $Y \sim \operatorname{Poisson}(\lambda=3)$. Calculate the mean and variance of $Z=5+2 X-7 Y$.

First note

$$
\begin{aligned}
& E X=n \cdot p=10 \cdot 0.5=5 \\
& \operatorname{Var} X=n \cdot p(1-p)=10 \cdot 0.5 \cdot 0.5=2.5 \\
& E Y=\lambda=3 \\
& \operatorname{Var} Y=\lambda=3
\end{aligned}
$$

Than

$$
\begin{aligned}
E Z & =E(5+2 x-7 y) \\
& =5+2 E x-7 E y \\
& =5+2(5)-7(3) \\
& =-6
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var} z & =\operatorname{Var}(5+2 x-74) \\
& =2^{2} \operatorname{Var} x+(-7)^{2} \operatorname{Var} y . \\
& =4(2.5)+49(3) \\
& =157
\end{aligned}
$$

A particularly important use of Proposition 5.1 concerns n (id random variables where each $a_{i}=\frac{1}{n}$, for $i=1, \ldots, n$
x_{1}, \ldots, x_{n} are conceptually eqaivalut to vardon selections (with replace net) from a single numerical population.

We can find the mean and variance of the random variable
sample mean.

$$
\bar{X}=\frac{1}{n} X_{1}+\cdots \frac{1}{n} X_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

x_{1}, \ldots, x_{n} are idetially as they relate to the population parameters $\mu=\mathrm{E} X_{i}$ and $\sigma^{2}=\operatorname{Var} X_{i}$.

$$
\begin{aligned}
E X_{1} & =\cdots=Z_{n}=\mu \\
\operatorname{Var} X_{1} & =\cdots=V_{a} X_{n}=\sigma^{2}
\end{aligned}
$$

For independent variables X_{1}, \ldots, X_{n} with common mean μ and variance σ^{2},

$$
\begin{aligned}
\& E \bar{X} & =E\left[\frac{1}{n} X_{1}+\cdots+\frac{1}{n} X_{n}\right] \\
& =\frac{1}{n} E X_{1}+\ldots+\frac{1}{n} E X_{n} \quad \text { (prop 5.1) } \\
& =\underbrace{\frac{1}{n} \mu+\cdots+\frac{1}{n} \mu}_{n \text { terns }} \\
& =\frac{1}{n} \cdot n \mu=\mu
\end{aligned}
$$

So, the expected value of the sample mean is population mean.

$$
\begin{aligned}
\not \forall \operatorname{Var} \bar{X} & =\operatorname{Var}\left[\frac{1}{n} x_{1}+\ldots+\frac{1}{n} x_{n}\right] \\
& \left.=\left(\frac{1}{n}\right)^{2} \operatorname{Var} x_{1}+\ldots+\left(\frac{1}{n}\right)^{2} \operatorname{Var} x_{n} \quad \text { (prop } 5.1\right) \\
& =\frac{\frac{1}{n^{2}} 6^{2}+\ldots+\frac{1}{n^{2}} 6^{2}}{n \text { terms }} \\
& =\frac{1}{n^{2}} \cdot n \cdot 6^{2}=6^{2} / n
\end{aligned}
$$

The variance of the sample mean for a sample of size n is th popalation usance divided by the sample size.
ie. as the sample size grows, the variability of the sample wean decreases.

Example 5.38 (Seed lengths). One botanist measured the length of 10 seeds from the same plant. The seed lengths measurements are $X_{1}, X_{2}, \ldots, X_{10}$. Suppose it is known that the seed lengths are id with mean $\mu=5 \mathrm{~mm}$ and variance $\sigma^{2}=2 \mathrm{~mm}$.

Calculate the mean and variance of the average of 10 seed measurements.

$$
\begin{aligned}
\bar{X} & =\text { average of } 10 \text { measurements } \\
& =\frac{1}{10} \sum_{i=1}^{10} x_{i}
\end{aligned}
$$

Since X_{i} lid with $\mu=s, \sigma^{2}=2$,

$$
\begin{aligned}
& E \bar{X}=\mu=5 \mathrm{~mm} \\
& \operatorname{Var} \bar{X}=\frac{1}{n} \sigma^{2}=\frac{2}{10}=0.2
\end{aligned}
$$

5.5.2 Central limit theorem

One of the most frequently used statistics in engineering applications is the sample mean. We can relate the mean and variance of the probability distribution of the sample mean to (location) (spread) those of a single observation when an id model is appropriate.

4 in the case of the sample mean, if the sample size is I arge enough, we can also approximate the shape of the probability distribution of the sample mean!

Proposition 5.2. If X_{1}, \ldots, X_{n} are id random variable (with mean μ and variance σ^{2}), then for large n, the variable \bar{X} is approximately normally distributed. That is,
$n \geq 25$

This is one of the most important results in statistics.

Example 5.39 (Tool serial numbers). Consider selecting the last digit of randomly selected serial numbers of pneumatic tools. Let
$W_{1}=$ the last digit of the serial number observed next Monday at yam $W_{2}=$ the last digit of the serial number observed the following Monday at gam

A plausible model for the pair of random variables W_{1}, W_{2} is that they are independent, each with the marginal probability function

$$
f(w)=\left\{\begin{array}{ll}
.1 & w=0,1,2, \ldots, 9 \\
0 & \text { otherwise }
\end{array}\right\} \begin{aligned}
& \text { wifiform } \\
& \text { offer } \\
& 0
\end{aligned} . . .9
$$

With $\mathrm{E} W=4.5$ and $\operatorname{Var} W=8.25$.

Using such a distribution, it is possible to see that $\bar{W}=\frac{1}{2}\left(W_{1}+W_{2}\right)$ has probability distribution

Comparing the two distributions, it is clear that even for a completely flat/uniform distribution of W and a small sample size of $n=2$, the probability distribution of \bar{W} looks more bell-shaped than the underlying distribution.

Now consider larger and larger sample sizes, $n=1, \ldots 40$: and look at the distribution of the sample mean for larger and loges samples.

Example 5.40 (Stamp sale time). Imagine you are a stamp salesperson (on eBay). Consider the time required to complete a stamp sale as S, and let
(3) $\bar{S}=$ the sample mean time required to complete the next 100 sales

Each individual sale time should have an $\operatorname{Exp}(\alpha=16.5 s)$ distribution. We want to consider approximating $P[\bar{S}>17]$.
(i)

$$
\left.\begin{array}{l}
S_{i} \stackrel{i i d}{\sim} E_{x p}(16.5) \quad i=1, \ldots, 100 \\
\mu=E S_{i}=16.5 \\
\sigma^{2}=\operatorname{Var} S_{i}=16.5^{2}=272.25
\end{array}\right\} \text { for } i=1, \ldots, 100 \quad \text { (iid) }
$$

Since $n=100 \geq 25$,

$$
\begin{aligned}
& \bar{S} \dot{\sim} N\left(16.5,2.7225=1.65^{2}\right) \\
& P(\bar{S}>17)=P\left(\frac{\bar{s}-16.5}{1.65}>\frac{17-16.5}{1.65}\right) \\
& \approx P(\bar{z}>0.303) \text { where } z \sim N(0.1) \text { by CLT } \\
&=1-P(z \leq 0.303) \\
&=1-\Phi(0.303) \\
& \approx 1-0.6217 \quad \text { (at least) } \\
&=0.3783
\end{aligned}
$$

Example 5.41 (Cars). Suppose a bunch of cars pass through certain stretch of road. Whenever a car comes, you look at your watch and record the time. Let X_{i} be the time (in minutes) between when the $i^{\text {th }}$ car comes and the $(i+1)^{t h}$ car comes for $i=1, \ldots, 44$. Suppose you know the average time between cars is 1 minute. Find the probability that the 1.05 average time gap between cars exceeds minutes.
$\hat{\text { for next }} 44$ cos
$X_{i}=$ time in minutes between its er and (i+1)th cor
$\Rightarrow x_{i} \stackrel{i i d}{\sim} \operatorname{Exp}(\alpha)$, where $\alpha=1 \quad$ for $i=1, \ldots, 44$
Let $\bar{X}=\frac{1}{44} \sum_{i=1}^{44} x_{i}$ (average gap letiven cos for 44 cos)
want $\rho(\bar{x}>1.05)$.

$$
\begin{aligned}
E X_{i} & =\alpha=1 \quad \text { for } \quad i=1, \ldots, 44 \\
\operatorname{Var} X_{i} & =\alpha^{2}=1
\end{aligned}
$$

ind $\Rightarrow E \bar{x}=1$

$$
\begin{aligned}
& E X=1 \\
& V_{0}, \bar{x}=\frac{1}{44} \quad n=44 \geq 25 \Rightarrow \bar{x} \sim N\left(1, \frac{1}{44}\right) \\
& P(\bar{x}>1.05)=p\left(\frac{\bar{x}-1}{\sqrt{1 / 44}>} \frac{1.05-1}{\sqrt{1 / 44}}\right)
\end{aligned}
$$

$$
\approx \rho(Z>0.332) \quad Z \sim N(0,1) \text { because } n=44 \geq 25
$$

$$
\approx P(z>6.34) \quad \text { (a least) }
$$

$$
=1-p(z \leq 0.34)
$$

$=1-\Phi(0.34)$
$=1-\underset{.69}{0.6331}=0.3669$

Example 5.42 (Baby food jars, cont'd). The process of filling food containers appears to have an inherent standard deviation of measured fill weights on the order of 1.6 g . Suppose we want to calibrate the filling machine by setting an adjustment knob and filling a run of n jars. Their sample mean net contents will serve as an indication of the process mean fill level corresponding to that knob setting.

You want to choose a sample size, n, large enough that there is an 80% chance the sample mean is within $0.3 y$ of the actual process mean.

We want to choose n such that

$$
0.8=P[\mu-0.3 \leq \bar{x} \leq \mu+0.3]
$$

Where $X_{i}=$ the weight of 1 jar assure rid
$\bar{x}=$ the sample mean wight of n jars.
For n loge enough $(n \geq 25)$, we lonow that
$\bar{X} \dot{\sim} N\left(\mu, \frac{\sigma^{2}}{n}\right)$ where $6^{2}=1.6^{2}$ (again, we don't know μ)

$$
\begin{aligned}
\operatorname{Var} \bar{x} & =\frac{1.6^{2}}{n} \Rightarrow \operatorname{St} . \operatorname{dev} \bar{x}=\sqrt{\frac{1.6^{2}}{n}}=\frac{1.6}{\sqrt{n}} \\
0.8 & =\rho[\mu-0.3 \leq \bar{x} \leq \mu+0.3] \\
& =\rho\left[\frac{\mu-0.3-\mu}{(1.6 / \sqrt{n}} \leq \frac{(\bar{x})-\mu}{1.6 / \sqrt{n}} \leq \frac{\mu+0.3-\mu}{1.6 / \sqrt{n}}\right]
\end{aligned}
$$

Example 5.43 (Printing mistakes). Suppose the number of printing mistakes on a page follows some unknown distribution with a mean of 4 and a variance of 9 . Assume that number of printing mistakes on a printed page are id.

1. What is the approximate probability distribution of the average number of printing mistakes on 50 pages?

$$
\bar{X} \dot{\sim} N\left(4, \frac{9}{50}\right) \text { by CLT since } n=50 \geq 25
$$

2. Can you find the probability that the number of printing mistakes on a single page is less than 3.8 ?
No, because the probability distribution of \# of printing mistakes on a single page is unknown.
3. Can you find the probability that the average number of printing mistakes on 10 pages is less than 3.8?
No, because $n=10<25$, so tee CLT cannot be used Thus, th distribution of \bar{x} is vaknown.
4. Can you find the probability that the average number of printing mistakes on 50 pages is less than 3.8?
Yes, becourn $n=50 \geq 25$, and x_{i} id. $\bar{x} \sim N\left(4, \frac{9}{50}\right)$

$$
\begin{aligned}
P(\bar{x}<3.8) & =P\left(\frac{\bar{x}-4}{\sqrt{9 / 50}}<\frac{3.8-4}{\sqrt{9 / 50}}\right) \\
& \approx P(z<-0.1714) \\
& \approx \Phi(-.48) \text { "a least" } \\
& =0.3156
\end{aligned}
$$

