
6.4 Inference for matched pairs and two-sample data

An important type of application of confidence interval estimation and significance testing is

when we either have paired data or two-sample data.

6.4.1 Matched pairs

Recall,

Examples:

One simple method of investigating the possibility of a consistent difference between paired

data is to

1.

2.
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Example 6.17 (Fuel economy). Twelve cars were equipped with radial tires and driven

over a test course. Then the same twelve cars (with the same drivers) were equipped with

regular belted tires and driven over the same course. After each run, the cars gas economy

(in km/l) was measured. Using significance level α = 0.05 and the method of critical values,

test for a difference in fuel economy between the radial tires and belted tires. Construct a

95% confidence interval for true mean difference due to tire type.

car 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

radial 4.2 4.7 6.6 7.0 6.7 4.5 5.7 6.0 7.4 4.9 6.1 5.2

belted 4.1 4.9 6.2 6.9 6.8 4.4 5.7 5.8 6.9 4.7 6.0 4.9
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Example 6.18 (End-cut router). Consider the operation of an end-cut router in the manu-

facture of a company’s wood product. Both a leading-edge and a trailing-edge measurement

were made on each wooden piece to come off the router. Is the leading-edge measurement

different from the trailing-edge measurement for a typical wood piece? Do a hypothesis test

at α = 0.05 to find out. Make a two-sided 95% confidence interval for the true mean of the

difference between the measurements.

piece 1.000 2.000 3.000 4.000 5.000

leading_edge 0.168 0.170 0.165 0.165 0.170

trailing_edge 0.169 0.168 0.168 0.168 0.169

33





6.4.2 Two-sample data

Paired differences provide inference methods of a special kind for comparison. Methods that

can be used to compare two means where two different unrelated samples will be discussed

next.

Examples:

Notation:
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6.4.2.1 Large samples (n1 ≥ 25, n2 ≥ 25)

The difference in sample means x1 − x2 is a natural statistic to use in comparing µ1 and µ2.

If σ1 and σ2 are known, then Proposition 5.1 tells us

E(X1 −X2) =

Var(X1 −X2) =

If, in addition, n1 and n2 are large,

35



So, if we want to test H0 : µ1 − µ2 = # with some alternative hypothesis, σ1 and σ2 are

known, and n1 ≥ 25, n2 ≥ 25, then we use the statistic

K =

which has a N(0, 1) distribution if

1. H0 is true

2. The sample 1 points are iid with mean µ1 and variance σ2
1, and the sample 2 points are

iid with mean µ2 and variance σ2
2.

The confidence intervals (2-sided, 1-sided upper, and 1-sided lower, respectively) for µ1 − µ2

are:
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If σ1 and σ2 are unknown, and n1 ≥ 25, n2 ≥ 25, then we use the statistic

K =

and confidence intervals (2-sided, 1-sided upper, and 1-sided lower, respectively) for µ1 − µ2:
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Example 6.19 (Anchor bolts). An experiment carried out to study various characteristics of

anchor bolts resulted in 78 observations on shear strength (kip) of 3/8-in. diameter bolts and

88 observations on strength of 1/2-in. diameter bolts. Let Sample 1 be the 1/2 in diameter

bolts and Sample 2 be the 3/8 indiameter bolts. Using a significance level of α = 0.01, find

out if the 1/2 in bolts are more than 2 kip stronger (in shear strength) than the 3/8 in bolts.

Calculate and interpret the appropriate 99% confidence interval to support the analysis.

• n1 = 88, n2 = 78

• x1 = 7.14, x2 = 4.25

• s1 = 1.68, s2 = 1.3
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6.4.2.2 Small samples

If n1 < 25 or n2 < 25, then we need some other assumptions to hold in order to complete

inference on two-sample data.

A test statistic to test H0 : µ1 − µ2 = # against some alternative is K =

Also assuming - H0 is true, - The sample 1 points are iid N(µ1, σ
2
1), the sample 2 points are

iid N(µ2, σ
2
2), - and the sample 1 points are independent of the sample 2 points.

Then K ∼

1 −α confidence intervals (2-sided, 1-sided upper, and 1-sided lower, respectively) for µ1 − µ2

under these assumptions are of the form:
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Example 6.20 (Springs). The data of W. Armstrong on spring lifetimes (appearing in the

book by Cox and Oakes) not only concern spring longevity at a 950 N/mm2 stress level but

also longevity at a 900 N/mm2 stress level. Let sample 1 be the 900 N/mm2 stress group

and sample 2 be the 950 N/mm2 stress group. Let’s do a hypothesis test to see if the sample

1 springs lasted significantly longer than the sample 2 springs.

900 N/mm2 Stress 950 N/mm2 Stress

216, 162, 153, 216, 225, 216, 306, 225, 243, 189 225, 171, 198, 189, 189, 135, 162, 135, 117, 162
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Figure 1: Normal plots of spring lifetimes under two different levels of stress.
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Example 6.21 (Stopping distance). Suppose µ1 and µ2 are true mean stopping distances

(in meters) at 50 mph for cars of a certain type equipped with two different types of breaking

systems. Suppose n1 = n2 = 6, x1 = 115.7, x2 = 129.3, s1 = 5.08, and s2 = 5.38. Use

significance level α = 0.01 to test H0 : µ1 − µ2 = −10 vs. HA : µ1 − µ2 < −10. Construct a

2-sided 99
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6.5 Prediction intervals

Methods of confidence interval estimation andd hypothesis testing concern the problem of

reasoning from sample information to statements about underlying parameters of the data

generation (such as µ).

Sometimes it is useful to not make a statement about a parameter value, but create bounds

on other individual values generated by the process.

How can we use out data x1, . . . , xn to create an interval likely to contain one

additional (as yet unobserved) value xn+1 from the same data generating mecha-

nism?

Let X1, . . . , Xn be iid Normal random variables with

E(Xi) = µ for all i = 1, . . . , n

Var(Xi) = σ2 for all i = 1, . . . , n

Then,

Let Xn+1 be an additional observation from the same data generating mechanism.
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E(Xn −Xn+1) =

Var(Xn −Xn+1) =

So,
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Generally, σ is unknown, so replace σ by s, and

Then, 1 − α Prediction intervals for Xn+1 are
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