9 Inference for curve and surface fitting

Previously, we have discussed how to describe relationships between variables (Ch. 4). We
now move into fermal inference for these relationships starting with relationships between

two variables and moving on to more.

9.1 Simple linear regression
Recall, in Ch. 4, we wanted an equation to describe how a dependent (response) variable, v,
changes in response to a change in one or more independent (experimental) variable(s), x.

We used the notation ecro’

/
y =00+ fiz+E)

where [, is the intercept.
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[y is the slope.
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€ is some error. In fact,
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Goal: We want to use inference to get interval estimates for our slope and predicted values

and_significance tests that the slope is not equal to zero. \ .
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9.1.1 Variance estimation

What are the parameters in our model, and how do we estimate them?
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We need an estimate for o2 in a regression, or “line-fitting” context.

Definition 9.1. For a set of data pairs (z1,v1), ..., (Zn, yn) Where least squares fitting of a

line produces fitted values ¢; = by + byx; and residuals e; = y; — ¥,
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is the line-fitting sample variance. Associated with it are v = n — 2 degrees of freedom and

an estimated standard deviation of response spp = /5% 5.
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s2 - estimates the level of basic background variation o2, whenever the model is an adequate

description of the data.



9.1.2 Inference for parameters

We are often interested in testing if 5; = 0. This tests whether or not there is a significant

linear relationship between z and y. We can do this using
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Example 9.1 (Ceramic powder pressing). A mixture of Al,Og, polyvinyl alcohol, and water
was prepared, dried overnight, crushed, and sieved to obtain 100 mesh size grains. These
were pressed into cylinders at pressures from 2,000 psi to 10,000 psi, and cylinder densities

were calculated. Consider a pressure/density study of n = 15 data pairs representing

x = the pressure setting used (psi)

y = the density obtained (g/cc)

in the dry pressing of a ceramic compound into cylinders.

pressure density p ressure d ensity

2000 2.486 6000 2.653
2000 2.479 8000 2.724
2000 2.472 8000 2.774
4000 2.558 8000 2.808
4000 2.570 10000 2.861
4000 2.580 10000 2.879
6000 2.646 10000 2.858
6000 2.657
H
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A line has been fit in JMP using the method of least squares.
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Figure 1: Least squares regression of d5ensity on pressure of ceramic cylinders.



. Write out the model with the appropriate estimates.

9 = 23735+ 4.9 ((# xlb‘sx

. Are the assumptions for the model met?
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. What is the fraction of raw variation in y accounted for by the fitted equation?
L

R=0.932]

. What is the correlation between x and y?
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7. Calculate and interpret the 95% CI for 3
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8. Conduct a forinal hypothesis test at the o = .05 significance level to determine if the

relationship between density and pressure is significant.
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9.1.3 Inference for mean response

Recall our model

yi = Po+ Piri +e, € s N(0702)~

Under the model, the true mean response at some observed covariate value z; is

Now, if some new covariate value x is within the range of the x;’s, we can estimate the true

mean response at this new x

But how good is the estimate?



Under the model,

So we can construct a N (0, 1) random variable by standardizing.

And when o is unknown (i.e. basically always),



To test Hy : piy, = #, we can use the test statistics

K =

which has a t,,_o distribution if Hy is true and the model is correct.

A 2-sided (1 — a)100% CI for puy, is
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Example 9.2 (Ceramic powder pressing). Return to the ceramic density problem. We will
make a 2-sided 95% confidence interval for the true mean density of ceramics at 4000 psi and

interpret it.
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Now calculate and interpret a 2-sided 95% confidence interval for the true mean density at

5000 psi.
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9.2 Multiple regression

Recall the summarization the effects of several different quantitative variables zq,..., 2,4

on a response y.

Yi = Bo+ Lixii + - Bpo1Tp—1i

Where we estimate (3, ..., 8,—1 using the least squares principle by minimizing the function
S(bo, ce 7bp—1) = Z(?/z - @)2 = Z(yz — Bo — 51%,1‘ — ﬁp—19€p—1,i)2
i=1 i=1

to find the estimates by, ..., b,_1.

We can formalize this now as
Yi=Bo+ Bz + - Bpo1Tp_1i + €

iid
where we assume ¢; ~ N (0, 0?).
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9.2.1 Variance estimation

Based on our multiple regression model, the residuals are of the form

€ =Y — Y

And we can estimate the variance similarly to the SLR case.

Definition 9.2. For a set of n data vectors (11, a1, .-, Tp—11,Y)s - - -, (T1ns Tons - -« s Tp1n, Y)

where least squares fitting is used to fit a surface,
1 R 1
Sor = Sly—9)=

n—p n—p

>e

is the surface-fitting sample variance. Associated with it are v = n — p degrees of freedom

and an estimated standard deviation of response sgr = 1/ s%p.

Note: the SLR fitting sample variance s2 . is the special case of s% for p = 2.

Example 9.3 (Stack loss). Consider a chemical plant that makes nitric acid from ammonia.

We want to predict stack loss (y, 10 times the % of ammonia lost) using
o 1x1: air flow into the plant
e x9: inlet temperature of the cooling water

 1x3: modified acid concentration (% circulating acid -50% ) x 10
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¥ Summary of Fit

RSquare 0.975006
RSquare Adj 0.969238
Root Mean Square Error 1.252714
Mean of Response 14.47059 . . . .
Observations (or Sum Wgts) 17 . . o e
v Analysis of Variance . . * B . ‘
Sum of * et " Toe e
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Figure 2: Least squares regression of stack loss on air flow, inlet temperature, and modified

acid concentration.
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9.2.2 Inference for parameters

We are often interested in answering questions (doing formal inference) for Sy, ..., 5,-1
individually. For example, we may want to know if there is a significant relationship between

y and xo (holding all else constant).

Under our model assumptions,

b; ~ N(ﬁi, di02>

for some positive constant d;, 7 =0,1,...,p— 1.

That means

So, a test statistic for Hy : §; = # is

and a 2-sided (1 — «)100% CI for 3; is
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Example 9.4 (Stack loss, cont’d). Using the model fit on page 15, answer the following

questions:

1. Is the average change in stack loss (y) for a one unit change in air flow into the plant
(x1) less than 1 (holding all else constant)? Use a significance testing framework with
a =1

2. Is the there a significant relationship between stack loss (y) and modified acid con-
centation (z3) (holding all else constant)? Use a significance testing framework with
a = .05.

3. Construct and interpret a 99% confidence interval for Ss.

4. Construct and interpret a 90% confidence interval for (3.
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9.2.3 Inference for mean response

We can also estimate the mean response at the set of covariate values, (z1,22,...,T,-1).
Under the model assumptions, the estimated mean response, ji,, at © = (z1, 22, ..., Tp_1) is
with:

Then, under the model assumptions

And a test statistic for testing Hy : p), = # is

A 2-sided (1 — )100% CI for juy, is

19



Example 9.5 (Stack loss, cont’d). We can use JMP to compute a 2-sided 95% CI around

the mean response at point 3:

r1 =062,19 = 23,23 =87,y =18
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Figure 3: How to get predicted values and standard errors.
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@0 stackloss

|'stackloss b =
J» Source - x1 x2 x3 ¥ Predictedy  StdErr Pred y
1 80 27 88 37 35840282687 1.0461642094
2 g2 22 87 18 18.671300496  0.35771273
3 62 23 87 18 19.248640953  0.417845385
- 4 B2 24 03 19 10423620349 0.6205887471
=)Columns (6/0) 5 62 24 03 20 10.423620348 0.6205687471
:;; 6 58 23 87 15 16.057898713 0.5204068064
A x3 7 58 18 ) 14 13640617664 0.5000546656
Ay 8 58 18 89 14 13.037076072 0.5582571612
:gtfg‘é‘r‘:‘g‘r‘eﬁ;r a 58 17 g8 13 12526795792 0.6739851764
10 58 18 g2 11 13.50849731 0.5519432283
11 58 19 03 12 13346175822 0.6055705716
12 50 18 89 B 6.6555015917 0.5876767248
= Foun 13 50 18 86 7 6.8567721223 0.4891659484
et e 14 50 19 72 B B.3720550563 0.8232400377
Selected 1 15 50 19 79 B 7.903533818 0.5302896274
ﬁ;:tliuded g 16 50 20 80 9 8.4138140985 0.5769617708
I en
pheden 5 17 56 20 g2 15 13.065807105 0.3632418427

Figure 4: Predicted values and standard errors.
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