
9 Inference for curve and surface fitting

Previously, we have discussed how to describe relationships between variables (Ch. 4). We

now move into formal inference for these relationships starting with relationships between

two variables and moving on to more.

9.1 Simple linear regression

Recall, in Ch. 4, we wanted an equation to describe how a dependent (response) variable, y,

changes in response to a change in one or more independent (experimental) variable(s), x.

We used the notation

y = β0 + β1x+ ε

where β0 is the intercept.

β1 is the slope.

ε is some error. In fact,

Goal: We want to use inference to get interval estimates for our slope and predicted values

and significance tests that the slope is not equal to zero.
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9.1.1 Variance estimation

What are the parameters in our model, and how do we estimate them?

We need an estimate for σ2 in a regression, or “line-fitting” context.

Definition 9.1. For a set of data pairs (x1, y1), . . . , (xn, yn) where least squares fitting of a

line produces fitted values ŷi = b0 + b1xi and residuals ei = yi − ŷi,

s2
LF = 1

n− 2

n∑
i=1

(yi − ŷi)2 = 1
n− 2

n∑
i=1

e2
i

is the line-fitting sample variance. Associated with it are ν = n− 2 degrees of freedom and

an estimated standard deviation of response sLF =
√
s2

LF .

s2
LF estimates the level of basic background variation σ2, whenever the model is an adequate

description of the data.
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9.1.2 Inference for parameters

We are often interested in testing if β1 = 0. This tests whether or not there is a significant

linear relationship between x and y. We can do this using

1.

2.

Both of these require

It can be shown that since yi = β0 + β1xi + εi and εi
iid∼ N(0, σ2), then

b1 ∼ N

(
β1,

σ2∑(x− x̄)2

)

So, a (1 − α)100% CI for β1 is

and the test statistic for H0 : β1 = # is
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Example 9.1 (Ceramic powder pressing). A mixture of Al2O3, polyvinyl alcohol, and water

was prepared, dried overnight, crushed, and sieved to obtain 100 mesh size grains. These

were pressed into cylinders at pressures from 2,000 psi to 10,000 psi, and cylinder densities

were calculated. Consider a pressure/density study of n = 15 data pairs representing

x = the pressure setting used (psi)

y = the density obtained (g/cc)

in the dry pressing of a ceramic compound into cylinders.

pressure density p ressure d ensity

2000 2.486 6000 2.653

2000 2.479 8000 2.724

2000 2.472 8000 2.774

4000 2.558 8000 2.808

4000 2.570 10000 2.861

4000 2.580 10000 2.879

6000 2.646 10000 2.858

6000 2.657
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A line has been fit in JMP using the method of least squares.
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Figure 1: Least squares regression of density on pressure of ceramic cylinders.
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1. Write out the model with the appropriate estimates.

2. Are the assumptions for the model met?

3. What is the fraction of raw variation in y accounted for by the fitted equation?

4. What is the correlation between x and y?

5. Estimate σ2.

6. Estimate Var(b1).
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7. Calculate and interpret the 95% CI for β1

8. Conduct a formal hypothesis test at the α = .05 significance level to determine if the

relationship between density and pressure is significant.
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9.1.3 Inference for mean response

Recall our model

y1 = β0 + β1xi + εi, εi
iid∼ N(0, σ2).

Under the model, the true mean response at some observed covariate value xi is

Now, if some new covariate value x is within the range of the xi’s, we can estimate the true

mean response at this new x

But how good is the estimate?
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Under the model,

So we can construct a N(0, 1) random variable by standardizing.

And when σ is unknown (i.e. basically always),
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To test H0 : µy|x = #, we can use the test statistics

K =

which has a tn−2 distribution if H0 is true and the model is correct.

A 2-sided (1 − α)100% CI for µy|x is

10



Example 9.2 (Ceramic powder pressing). Return to the ceramic density problem. We will

make a 2-sided 95% confidence interval for the true mean density of ceramics at 4000 psi and

interpret it.
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Now calculate and interpret a 2-sided 95% confidence interval for the true mean density at

5000 psi.
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9.2 Multiple regression

Recall the summarization the effects of several different quantitative variables x1, . . . , xp−1

on a response y.

yi ≈ β0 + β1x1i + · · · βp−1xp−1,i

Where we estimate β0, . . . , βp−1 using the least squares principle by minimizing the function

S(b0, . . . , bp−1) =
n∑

i=1
(yi − ŷ)2 =

n∑
i=1

(yi − β0 − β1x1,i − · · · − βp−1xp−1,i)2

to find the estimates b0, . . . , bp−1.

We can formalize this now as

Yi = β0 + β1x1i + · · · βp−1xp−1,i + εi

where we assume εi
iid∼ N(0, σ2).
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9.2.1 Variance estimation

Based on our multiple regression model, the residuals are of the form

ei = yi − ŷi

And we can estimate the variance similarly to the SLR case.

Definition 9.2. For a set of n data vectors (x11, x21, . . . , xp−11, y), . . . , (x1n, x2n, . . . , xp−1n, y)

where least squares fitting is used to fit a surface,

s2
SF = 1

n− p

∑
(y − ŷ)2 = 1

n− p

∑
e2

i

is the surface-fitting sample variance. Associated with it are ν = n− p degrees of freedom

and an estimated standard deviation of response sSF =
√
s2

SF .

Note: the SLR fitting sample variance s2
LF is the special case of s2

SF for p = 2.

Example 9.3 (Stack loss). Consider a chemical plant that makes nitric acid from ammonia.

We want to predict stack loss (y, 10 times the % of ammonia lost) using

• x1: air flow into the plant

• x2: inlet temperature of the cooling water

• x3: modified acid concentration (% circulating acid -50% ) × 10
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Figure 2: Least squares regression of stack loss on air flow, inlet temperature, and modified

acid concentration.
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9.2.2 Inference for parameters

We are often interested in answering questions (doing formal inference) for β0, . . . , βp−1

individually. For example, we may want to know if there is a significant relationship between

y and x2 (holding all else constant).

Under our model assumptions,

bi ∼ N(βi, diσ
2)

for some positive constant di, i = 0, 1, . . . , p− 1.

That means

So, a test statistic for H0 : βi = # is

and a 2-sided (1 − α)100% CI for βi is
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Example 9.4 (Stack loss, cont’d). Using the model fit on page 15, answer the following

questions:

1. Is the average change in stack loss (y) for a one unit change in air flow into the plant

(x1) less than 1 (holding all else constant)? Use a significance testing framework with

α = .1.

2. Is the there a significant relationship between stack loss (y) and modified acid con-

centation (x3) (holding all else constant)? Use a significance testing framework with

α = .05.

3. Construct and interpret a 99% confidence interval for β3.

4. Construct and interpret a 90% confidence interval for β2.
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9.2.3 Inference for mean response

We can also estimate the mean response at the set of covariate values, (x1, x2, . . . , xp−1).

Under the model assumptions, the estimated mean response, µy|x, at x = (x1, x2, . . . , xp−1) is

with:

Then, under the model assumptions

And a test statistic for testing H0 : µy|x = # is

A 2-sided (1 − α)100% CI for µy|x is
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Example 9.5 (Stack loss, cont’d). We can use JMP to compute a 2-sided 95% CI around

the mean response at point 3:

x1 = 62, x2 = 23, x3 = 87, y = 18
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Figure 3: How to get predicted values and standard errors.
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Figure 4: Predicted values and standard errors.
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