
5 Probability: the mathematics of randomness

The theory of probability is the mathematician’s description of random variation. This

chapter introduces enough probability to serve as a minimum background for making formal

statistical inferences.

5.1 (Discrete) random variables

The concept of a random variable is introduced in general terms and the special case of

discrete data is considered.

5.1.1 Random variables and distributions

It is helpful to think of data values as subject to chance influences. Chance is commonly

introduced into the data collection process through

1.

2.

3.
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Definition 5.1. A random variable is a quantity that (prior to observation) can be thought

of as dependent on chance phenomena.

Definition 5.2. A discrete random variable is one that has isolated or separated possible

values (rather than a continuum of available outcomes).

Definition 5.3. A continuous random variable is one that can be idealized as having an

entire (continuous) interval of numbers as its set of values.

Example 5.1 (Roll of a die).
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Definition 5.4. To specify a probability distribution for a random variable is to give its set

of possible values and (in one way or another) consistently assign numbers between 0 and 1 -

called probabilities - as measures of the likelihood that the various numerical values will occur

Example 5.2 (Roll of a die, cont’d).

x 1 2 3 4 5 6

P [X = x] 1/6 1/6 1/6 1/6 1/6 1/6

y 1 2 3 4 5 6

P [Y = y] 5/22 7/44 1/22 7/44 2/11 5/22
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Example 5.3 (Shark attacks). Suppose S is the number of provoked shark attacks off FL

next year. This has an infinite number of possible values. Here is one possible (made up)

distribution:

s 1 2 3 · · · k · · ·

P [S = s] 6
π2

1
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5.1.2 Probability mass functions and cumulative distribution functions

The tool most often used to describe a discrete probability distribution is the probability mass

function.

Definition 5.5. A probability mass function (pmf) for a discrete random variable X, having

possible values x1, x2, . . . , is a non-negative function f(x) with f(x1) = P [X = x1], the

probability that X takes the value x1.
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Properties of a mathematically valid probability mass function:

1.

2.

A probability mass function f(x) gives probabilities of occurrence for individual values.

Adding the appropriate values gives probabilities associated with the occurrence of multiple

values.

Example 5.4 (Torque). Let Z = the torque, rounded to the nearest integer, required to

loosen the next bolt on an apparatus.

z 11 12 13 14 15 16 17 18 19 20

f(z) 0.03 0.03 0.03 0.06 0.26 0.09 0.12 0.20 0.15 0.03

Calculate the following probabilities:

P (Z ≤ 14)

P (Z > 16)

P (Z is even)

P (Z in {15, 16, 18})
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Another way of specifying a discrete probability distribution is sometimes used.

Definition 5.6. The cumulative probability distribution (cdf) for a random variable X is a

function F (x) that for each number x gives the probability that X takes that value or a

smaller one, F (x) = P [X ≤ x].

Since (for discrete distributions) probabilities are calculated by summing values of f(x),

F (x) = P [X ≤ x] =
∑
y≤x

f(y)

Properties of a mathematically valid cumulative distribution function:

1.

2.

3.

4.
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Example 5.5 (Torque, cont’d). Let Z = the torque, rounded to the nearest integer, required

to loosen the next bolt on an apparatus.

z 11 12 13 14 15 16 17 18 19 20

F (z) 0.03 0.06 0.09 0.15 0.41 0.50 0.62 0.82 0.97 1

0.00
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1.00

12 15 18 21

z

F
(z

)

Figure 1: Cdf function for torques.

Calculate the following probabilities using the cdf only:

F (10.7)

P (Z ≤ 15.5)

P (12.1 < Z ≤ 14)

P (15 ≤ Z < 18)
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Example 5.6. Say we have a random variable Q with pmf:

q f(q)

1 0.34

2 0.1

3 0.22

7 0.34

Draw the cdf.
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5.1.3 Summaries

Almost all of the devices for describing relative frequency (empirical) distributions in Ch. 3

have versions that can describe (theoretical) probability distributions.

1.

2.

3.

Definition 5.7. The mean or expected value of a discrete random variable X is

EX =
∑
x

xf(x)
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Example 5.7 (Roll of a die, cont’d). Calculate the expected value of a toss of a fair and

unfair die.

x 1 2 3 4 5 6

P [X = x] 1/6 1/6 1/6 1/6 1/6 1/6

y 1 2 3 4 5 6

P [Y = y] 5/22 7/44 1/22 7/44 2/11 5/22
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Example 5.8 (Torque, cont’d). Let Z = the torque, rounded to the nearest integer, required

to loosen the next bolt on an apparatus.

z 11 12 13 14 15 16 17 18 19 20

f(z) 0.03 0.03 0.03 0.06 0.26 0.09 0.12 0.20 0.15 0.03

Calculate the expected torque required to loosen the next bolt.

Definition 5.8. The variance of a discrete random variable X is

VarX =
∑
x

(x− EX)2f(x) =
∑
x

x2f(x)− (EX)2.

The standard deviation of X is
√
VarX.
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Example 5.9. Say we have a random variable Q with pmf:

q f(q)

1 0.34

2 0.1

3 0.22

7 0.34

Calculate the variance and the standard deviation.
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Example 5.10 (Roll of a die, cont’d). Calculate the variance and standard deviation of a

roll of a fair die.

5.1.4 Special discrete distributions

Discrete probability distributions are sometimes developed from past experience with a

particular physical phenomenon.

On the other hand, sometimes an easily manipulated set of mathematical assumptions having

the potential to describe a variety of real situations can be put together.

One set of assumptions is that of independent identical success-failure trials where

1.

2.

13



Consider a variable

X = the number of successes in n independent identical success-failure trials

Definition 5.9. The binomial(n, p) distribution is a discrete probability distribution with

pmf

f(x) =


n!

x!(n−x)!p
x(1− p)n−x x = 0, 1, . . . , n

0 otherwise

for n a positive integer and 0 < p < 1.

Examples that could follow a binomial(n, p) distribution:
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For X a binomial(n, p) random variable,

µ = EX =
n∑
x=0

x
n!

x!(n− x)!p
x(1− p)n−x) = np

σ2 = VarX =
n∑
x=0

(x− np)2 n!
x!(n− x)!p

x(1− p)n−x) = np(1− p)

Example 5.11 (10 component machine). Suppose you have a machine with 10 independent

components in series. The machine only works if all the components work. Each component

succeeds with probability p = 0.95 and fails with probability 1− p = 0.05.

Let Y be the number of components that succeed in a given run of the machine. Then

Y ∼ Binomial(n = 10, p = 0.95)

Question: what is the probability of the machine working properly?

15



Example 5.12 (10 component machine, cont’d). What if I arrange these 10 components in

parallel? This machine succeeds if at least 1 of the components succeeds.

What is the probability that the new machine succeeds?

Example 5.13 (10 component machine, cont’d). Calculate the expected number of compo-

nents to succeed and the variance.
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Consider a variable

X = the number of trials required to first obtain a success result

Definition 5.10. The geometric(p) distribution is a discrete probability distribution with

pmf

f(x) =

p(1− p)
x−1 x = 1, . . .

0 otherwise

for 0 < p < 1.

Examples that could follow a geometric(p) distribution:
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For X a geometric(p) random variable,

µ = EX =
∞∑
x=1

xp(1− p)x−1 = 1
p

σ2 = VarX =
∞∑
x=1

(
x− 1

p

)2

p(1− p)x−1 = 1− p
p2

Cdf derivation:
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Example 5.14 (NiCad batteries). An experimental program was successful in reducing the

percentage of manufactured NiCad cells with internal shorts to around 1%. Let T be the test

number at which the first short is discovered. Then, T ∼ Geom(p).

Calculate

P (1st or 2nd cell tested has the 1st short)

P (at least 50 cells tested w/o finding a short)

Calculate the expected test number at which the first short is discovered and the variance in

test numbers at which the first short is discovered.
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It’s often important to keep track of the total number of occurrences of some relatively rare

phenomenon.

Consider a variable

X = the count of occurences of a phenomenon across a specified interval of time or space

Definition 5.11. The Poisson(λ) distribution is a discrete probability distribution with pmf

f(x) =


e−λλx

x! x = 0, 1, . . .

0 otherwise

for λ > 0.

These occurrences must:

1.

2.

3.

Examples that could follow a Poisson(λ) distribution:
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For X a Poisson(λ) random variable,

µ = EX =
∞∑
x=0

x
e−λλx

x! = λ

σ2 = VarX =
∞∑
x=0

(x− λ)2 e
−λλx

x! = λ
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Example 5.15 (Arrivals at the library). Some students’ data indicate that between 12:00

and 12:10pm on Monday through Wednesday, an average of around 125 students entered

Parks Library at ISU. Consider modeling

M = the number of students entering the ISU library between 12:00 and 12:01pm next Tuesday

Model M ∼ Poisson(λ). What would a reasonable choice of λ be?

Under this model, the probability that between 10 and 15 students arrive at the library

between 12:00 and 12:01 PM is:
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Example 5.16 (Shark attacks). Let X be the number of unprovoked shark attacks that

will occur off the coast of Florida next year. Model X ∼ Poisson(λ). From the shark data

at http://www.flmnh.ufl.edu/fish/sharks/statistics/FLactivity.htm, 246 unprovoked shark

attacks occurred from 2000 to 2009.

What would a reasonable choice of λ be?

Under this model, calculate the following:

P [no attacks next year]

P [at least 5 attacks]

P [more than 10 attacks]
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5.2 Continuous random variables

It is often convenient to think of a random variable as having a whole (continuous) interval

for its set of possible values.

The devices used to describe continuous probability distributions differ from those that

describe discrete probability distributions.

Examples of continuous random variables:
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5.2.1 Probability density functions and cumulative distribution functions

A probability density function (pdf) is the continuous analogue of a discrete random variable’s

probability mass function (pmf).

Definition 5.12. A probability density function (pdf) for a continuous random variable X is

a nonnegative function f(x) with
∞∫
−∞

f(x) = 1

and such that for all a ≤ b,

P [a ≤ X ≤ b] =
b∫
a

f(x)dx.

1.

2.

3.
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Example 5.17 (Compass needle). Consider a de-magnetized compass needle mounted at its

center so that it can spin freely. It is spun clockwise and when it comes to rest the angle, θ,

from the vertical, is measured. Let

Y = the angle measured after each spin in radians

What values can Y take?

What form makes sense for f(y)?

If this form is adopted, that what must the pdf be?
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Using this pdf, calculate the following probabilities:

1. P [Y < π
2 ]

2. P [π2 < Y < 2π]

3. P [π6 < Y < π
4 ]

4. P [Y = π
6 ]
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Definition 5.13. The cumulative distribution function (cdf) of a continuous random variable

X is a function F such that

F (x) = P [X ≤ x] =
x∫

−∞

f(t)dt

F (x) is obtained from f(x) by integration, and applying the fundamental theorem of calculus

yields

d

dx
F (x) = f(x).

That is, f(x) is obtained from F (x) by differentiation.

As with discrete random variables, F has the following properties:

1.

2.

3.

4.
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Example 5.18 (Compass needle, cont’d). Recall the compass needle example, with

f(y) =


1

2π 0 ≤ y ≤ 2π

0 otherwise

Find the cdf.

For y < 0

For 0 ≤ y ≤ 2π

For y > 2π
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Calculate the following using the cdf:

F (1.5)

P [Y ≤ 4π
5 ]

P [Y > 5]

P [π3 < Y ≤ π
2 ]
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5.2.2 Quantiles

Recall:

Definition 5.14. The p-quantile of a random variable, X, is the number Q(p) such that

P [X ≤ Q(p)] = p.

In terms of the cumulative distribution function (for a continuous random variable),

Example 5.19 (Compass needle, cont’d). Recall the compass needle example, with

f(y) =


1

2π 0 ≤ y ≤ 2π

0 otherwise

Q(.95):
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You can also calculate quantiles directly from the cdf.

F (y) =



0 y < 0

1
2πy 0 ≤ y ≤ 2π

1 otherwise

Q(.25):

Q(.5)
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5.2.3 Means and variances for continuous distributions

It is possible to summarize continuous probability distributions using

1.

2.

3.

Definition 5.15. The mean or expected value of a continuous random variable X is

EX =
∞∫
−∞

xf(x)dx.

Example 5.20 (Compass needle, cont’d). Calculate EY where Y is the angle from vertical

in radians that a spun needle lands on.

f(y) =


1

2π 0 ≤ y ≤ 2π

0 otherwise
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Example 5.21. Calculate EX where X follows the following distribution

f(x) =


0 x < 0

1
3e
−x/3 x ≥ 0

Definition 5.16. The variance of a continuous random variable X is

VarX =
∞∫
−∞

(x− EX)2f(x)dx =
∞∫
−∞

x2f(x)dx− (EX)2.

The standard deviation of X is
√
VarX.
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Example 5.22 (Library books). Let X denote the amount of time for which a book on

2-hour hold reserve at a college library is checked out by a randomly selected student and

suppose its density function is

f(x) =


0.5x 0 ≤ x ≤ 2

0 otherwise

Calculate EX and VarX.
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Example 5.23 (Ecology). An ecologist wishes to mark off a circular sampling region having

radius 10m. However, the radius of the resulting region is actually a random variable R with

pdf

f(r) =


3
2(10− r)2 9 ≤ r ≤ 11

0 otherwise

Calculate ER and SD(R).
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Why does E(X2) =
∞∫
−∞

x2f(x)dx?

Example 5.24 (Ecology, cont’d). Calculate the expected area of the circular sampling

region.
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For a linear function, g(X) = aX + b, where a and b are constants,

E(aX + b)

Var(aX + b)

Example 5.25 (Ecology, cont’d). Calculate the expected value and variance of the diameter

of the circular sampling region.
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Definition 5.17. Standardization is the process of transforming a random variable, X, into

the signed number of standard deviations by which it is is above its mean value.

Z = X − EX
SD(X)

Z has mean 0

Z has variance (and standard deviation) 1
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5.2.4 A special continuous distribution

Just as there are a number of useful discrete distributions commonly applied to engineering

problems, there are a number of standard continuous probability distributions.

Definition 5.18. The exponential(α) distribution is a continuous probability distribution

with probability density function

f(x) =


1
α
e−x/α x > 0

0 otherwise

for α > 0.

0.0
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0 1 2 3 4 5

x

f(
x)

α
0.5

1

2

An Exp(α) random variable measures the waiting time until a specific event that has an

equal chance of happening at any point in time.

Examples:
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It is straightforward to show for X ∼ Exp(α),

1. µ = EX =
∞∫
0
x 1
α
e−x/αdx =

2. σ2 = VarX =
∞∫
0

(x− α)2 1
α
e−x/αdx =

Further, F (x) has a simple formulation:

41



Example 5.26 (Library arrivals, cont’d). Recall the example the arrival rate of students

at Parks library between 12:00 and 12:10pm early in the week to be about 12.5 students

per minute. That translates to a 1/12.5 = .08 minute average waiting time between student

arrivals.

Consider observing the entrance to Parks library at exactly noon next Tuesday and define

the random variable

T = the waiting time (min) until the first student passes through the door.

Using T ∼ Exp(.08), what is the probability of waiting more than 10 seconds (1/6 min) for

the first arrival?

What is the probability of waiting less than 5 seconds?
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5.2.5 The Normal distribution

We have already seen the normal distribution as a “bell shaped” distribution, but we can

formalize this.

Definition 5.19. The normal or Gaussian(µ, σ2) distribution is a continuous probability

distribution with probability density

f(x) = 1√
2πσ2

e−(x−µ)2/2σ2 for all x

for σ > 0.

A normal random variable is (often) a finite average of many repeated, independent, identical

trials.

It is not obvious, but

1.
∞∫
−∞

f(x)dx =
∞∫
−∞

1√
2πσ2 e

−(x−µ)2/2σ2
dx =

2. EX =
∞∫
−∞

x 1√
2πσ2 e

−(x−µ)2/2σ2
dx =

3. VarX =
∞∫
−∞

(x− µ)2 1√
2πσ2 e

−(x−µ)2/2σ2
dx =
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The Calculus I methods of evaluating integrals via anti-differentiation will fail when it comes

to normal densities. They do not have anti-derivatives that are expressible in terms of

elementary functions.

The use of tables for evaluating normal probabilities depends on the following relationship. If

X ∼ Normal(µ, σ2),

P [a ≤ X ≤ b] =
b∫
a

1√
2πσ2

e−(x−µ)2/2σ2
dx =

(b−µ)/σ∫
(a−µ)/σ

1√
2π
e−z

2/2dz = P

[
a− µ
σ
≤ Z ≤ b− µ

σ

]

where Z ∼ Normal(0, 1).

Definition 5.20. The normal distribution with µ = 0 and σ = 1 is called the standard

normal distribution.

So, we can find probabilities for all normal distributions by tabulating probabilities for only

the standard normal distribution. We will use a table of the standard normal cumulative

probability function.

Φ(z) = F (z) =
z∫

−∞

1√
2π
e−t

2
dt.
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Example 5.27 (Standard normal probabilities). P [Z < 1.76]

P [.57 < Z < 1.32]

We can also do it in reverse, find z such that P [−z < Z < z] = .95.
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Example 5.28 (Baby food). J. Fisher, in his article Computer Assisted Net Weight Control

(Quality Progress, June 1983), discusses the filling of food containers with strained plums and

tapioca by weight. The mean of the values portrayed is about 137.2g, the standard deviation

is about 1.6g, and data look bell-shaped. Let

W = the next fill weight.

Let’s find the probability that the next jar contains less food by mass than it’s supposed to

(declared weight = 135.05g).
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Example 5.29 (More normal probabilities). Using the standard normal table, calculate the

following:

P (X ≤ 3), X ∼ Normal(2, 64)

P (X > 7), X ∼ Normal(6, 9)

P (|X − 1| > 0.5), X ∼ Normal(2, 4)
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We can find standard normal quantiles by using the standard normal table in reverse.

Example 5.30 (Baby food, cont’d). For the jar weights X ∼ Normal(137.2, 1.622), find

Q(0.1).
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Example 5.31 (Normal quantiles). Find:

Q(0.95) of X ∼ Normal(9, 3) .

c such that P (|X − 2| > c) = 0.01, X ∼ Normal(2, 4)
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5.3 Joint distributions and independence (discrete)

Most applications of probability to engineering statistics involve not one but several random

variables. In some cases, the application is intrinsically multivariate.

Example 5.32. Consider the assembly of a ring bearing with nominal inside diameter 1.00

in. on a rod with nominal diameter .99 in. If

X = the ring bearing inside diameter

Y = the rod diameter

One might be interested in

P [there is an interference in assembly] =

Even when a situation is univariate, samples larger than size 1 are essentially always used in

engineering applications. The n data values in a sample are usually thought of as subject to

chance and their simultaneous behavior must then be modeled.

This is actually a very broad and difficult subject, we will only cover a brief introduction to

the topic: jointly discrete random variables.
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5.3.1 Joint distributions

For several discrete random variable, the device typically used to specify probabilities is a

joint probability function. The two-variable version of this is defined.

Definition 5.21. A joint probability function (joint pmf) for discrete random variables X

and Y is a nonnegative function f(x, y), giving the probability that (simultaneously) X takes

the values x and Y takes the values y. That is,

f(x, y) = P [X = x and Y = y]

Properties:

1.

2.

For the discrete case, it is useful to give f(x, y) in a table.
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Example 5.33 (Two bolt torques, cont’d). Recall the example of measure the bolt torques

on the face plates of a heavy equipment component to the nearest integer. With

X = the next torque recorded for bolt 3

Y = the next torque recorded for bolt 4

the joint probability function, f(x, y), is

y\x 11 12 13 14 15 16 17 18 19 20
20 0 0 0 0 0 0 0 2/34 2/34 1/34
19 0 0 0 0 0 0 2/34 0 0 0
18 0 0 1/34 1/34 0 0 1/34 1/34 1/34 0
17 0 0 0 0 2/34 1/34 1/34 2/34 0 0
16 0 0 0 1/34 2/34 2/34 0 0 2/34 0
15 1/34 1/34 0 0 3/34 0 0 0 0 0
14 0 0 0 0 1/34 0 0 2/34 0 0
13 0 0 0 0 1/34 0 0 0 0 0

P [X = 18 and Y = 17]

P [X = 14 and Y = 19]

By summing up certain values of f(x, y), probabilities associated with X and Y with patterns

of interest can be obtained.
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Consider:

P [X ≥ Y ]

y\x 11 12 13 14 15 16 17 18 19 20
20
19
18
17
16
15
14
13

P [|X − Y | ≤ 1]

y\x 11 12 13 14 15 16 17 18 19 20
20
19
18
17
16
15
14
13

P [X = 17]

y\x 11 12 13 14 15 16 17 18 19 20
20
19
18
17
16
15
14
13
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5.3.2 Marginal distributions

In a bivariate problem, one can add down columns in the (two-way) table of f(x, y) to get

values for the probability function of X, fX(x) and across rows in the same table to get

values for the probability distribution of Y , fY (y).

Definition 5.22. The individual probability functions for discrete random variables X and

Y with joint probability function f(x, y) are called marginal probability functions. They are

obtained by summing f(x, y) values over all possible values of the other variable.

fX(x) =
∑
y

f(x, y)

fY (y) =
∑
x

f(x, y)

Example 5.34 (Torques, cont’d). Find the marginal probability functions for X and Y from

the following joint pmf.

y\x 11 12 13 14 15 16 17 18 19 20
20 0 0 0 0 0 0 0 2/34 2/34 1/34
19 0 0 0 0 0 0 2/34 0 0 0
18 0 0 1/34 1/34 0 0 1/34 1/34 1/34 0
17 0 0 0 0 2/34 1/34 1/34 2/34 0 0
16 0 0 0 1/34 2/34 2/34 0 0 2/34 0
15 1/34 1/34 0 0 3/34 0 0 0 0 0
14 0 0 0 0 1/34 0 0 2/34 0 0
13 0 0 0 0 1/34 0 0 0 0 0
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Getting marginal probability functions from joint probability functions begs the question

whether the process can be reversed. Can we find joint probability functions from

marginal probability functions?

5.3.3 Conditional distributions

When working with several random variables, it is often useful to think about what is expected

of one of the variables, given the values assumed by all others.

Definition 5.23. For discrete random variables X and Y with joint probability function

f(x, y), the conditional probability function of X given Y = y is the function of x

fX|Y (x|y) = f(x, y)
fY (y) = f(x, y)∑

x
f(x, y)

and the conditional probability function of Y given X = x is the function of y

fY |X(y|x) = f(x, y)
fX(x) = f(x, y)∑

y
f(x, y) .
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Example 5.35 (Torque, cont’d). For the torque example with the following joint distribution,

find the following:

1. fY |X(20|18)

2. fY |X(y|15)

3. fY |X(y|20)

4. fX|Y (x|18)

y\x 11 12 13 14 15 16 17 18 19 20 fY (y)
20 0/34 0/34 0/34 0/34 0/34 0/34 0/34 2/34 2/34 1/34 5/34
19 0/34 0/34 0/34 0/34 0/34 0/34 2/34 0/34 0/34 0/34 2/34
18 0/34 0/34 1/34 1/34 0/34 0/34 1/34 1/34 1/34 0/34 5/34
17 0/34 0/34 0/34 0/34 2/34 1/34 1/34 2/34 0/34 0/34 6/34
16 0/34 0/34 0/34 1/34 2/34 2/34 0/34 0/34 2/34 0/34 7/34
15 1/34 1/34 0/34 0/34 3/34 0/34 0/34 0/34 0/34 0/34 5/34
14 0/34 0/34 0/34 0/34 1/34 0/34 0/34 2/34 0/34 0/34 3/34
13 0/34 0/34 0/34 0/34 1/34 0/34 0/34 0/34 0/34 0/34 1/34

fX(x) 1/34 1/34 1/34 2/34 9/34 3/34 4/34 7/34 5/34 1/34 34/34
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5.3.4 Independence

Recall the following joint distribution:

y\x 1 2 3 fY (y)
3 0.08 0.08 0.04 0.20
2 0.16 0.16 0.08 0.40
1 0.16 0.16 0.08 0.40

fX(x) 0.40 0.40 0.20 1.00

What do you notice?

Definition 5.24. Discrete random variables X and Y are independent if their joint distribu-

tion function f(x, y) is the product of their respective marginal probability functions. This

is, independence means that

f(x, y) = fX(x)fY (y) for all x, y.

If this does not hold, then X and Y are dependent.

Alternatively, discrete random variables X and Y are independent if for all x and y,

If X andY are not only independent but also have the same marginal distribution, then they

are independent and identically distributed (iid).
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5.4 Functions of several random variables

We’ve now talked about ways to simultaneously model several random variables. An important

engineering use of that material is in the analysis of system output that are functions of

random inputs.

5.4.1 Linear combinations

For engineering purposes, it often suffices to know the mean and variance for a function

of several random variables, U = g(X1, X2, . . . , Xn) (as opposed to knowing the whole

distribution of U). When g is linear, there are explicit functions.

Proposition 5.1. If X1, X2, . . . , Xn are n independent random variables and a0, a1, . . . , an

are n+ 1 constants, then the random variable U = a0 + a1X1 + a2X2 + · · ·+ anXn has mean

EU = a0 + a1EX1 + a2EX2 + · · ·+ anEX3

and variance

VarU = a2
1VarX1 + a2

2VarX2 + · · ·+ a2
nVarX3
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Example 5.36. Say we have two independent random variables X and Y with EX =

3.3,VarX = 1.91,EY = 25, and VarY = 65. Find the mean and variance for

U = 3 + 2X − 3Y

V = −4X + 3Y

W = 2X − 5Y

Z = −4X − 6Y
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Example 5.37. Say X ∼ Binomial(n = 10, p = 0.5) and Y ∼ Poisson(λ = 3). Calculate

the mean and variance of Z = 5 + 2X − 7Y .
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A particularly important use of Proposition 5.1 concerns n iid random variables where each

ai = 1
n
.

We can find the mean and variance of the random variable

X = 1
n
X1 + · · · 1

n
Xn = 1

n

n∑
i=1

Xi

as they relate to the population parameters µ = EXi and σ2 = VarXi.

For independent variables X1, . . . , Xn with common mean µ and variance σ2,

EX =

VarX =
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Example 5.38 (Seed lengths). One botanist measured the length of 10 seeds from the same

plant. The seed lengths measurements are X1, X2, . . . , X10. Suppose it is known that the

seed lengths are iid with mean µ = 5 mm and variance σ2 = 2mm.

Calculate the mean and variance of the average of 10 seed measurements.

5.4.2 Central limit theorem

One of the most frequently used statistics in engineering applications is the sample mean.

We can relate the mean and variance of the probability distribution of the sample mean to

those of a single observation when an iid model is appropriate.
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Proposition 5.2. If X1, . . . , Xn are iid random variable (with mean µ and variance σ2),

then for large n, the variable X is approximately normally distributed. That is,

X
·∼ Normal

(
µ,
σ2

n

)

This is one of the most important results in statistics.

Example 5.39 (Tool serial numbers). Consider selecting the last digit of randomly selected

serial numbers of pneumatic tools. Let

W1 = the last digit of the serial number observed next Monday at 9am

W2 = the last digit of the serial number observed the following Monday at 9am

A plausible model for the pair of random variables W1,W2 is that they are independent, each

with the marginal probability function

f(w) =


.1 w = 0, 1, 2, . . . , 9

0 otherwise

0.000

0.025

0.050

0.075

0.100

0.0 2.5 5.0 7.5

w

f(
w

)

With EW = 4.5 and VarW = 8.25.
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Using such a distribution, it is possible to see that W = 1
2(W1 + W2) has probability

distribution

w f(w) w f(w) w f(w) w f(w) w f(w)
0.00 0.01 2.00 0.05 4.00 0.09 6.00 0.07 8 0.03
0.50 0.02 2.50 0.06 4.50 0.10 6.50 0.06 8.5 0.02
1.00 0.03 3.00 0.07 5.00 0.09 7.00 0.05 9 0.01
1.50 0.04 3.50 0.08 5.50 0.08 7.50 0.04

0.000

0.025

0.050

0.075

0.100

0.0 2.5 5.0 7.5
w

f(w
)

Comparing the two distributions, it is clear that even for a completely flat/uniform distribution

ofW and a small sample size of n = 2, the probability distribution ofW looks more bell-shaped

than the underlying distribution.

Now consider larger and larger sample sizes, n = 1, . . . , 40:

Click for video...
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Example 5.40 (Stamp sale time). Imagine you are a stamp salesperson (on eBay). Consider

the time required to complete a stamp sale as S, and let

S = the sample mean time required to complete the next 100 sales

Each individual sale time should have an Exp(α = 16.5s) distribution. We want to consider

approximating P [S > 17].
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Example 5.41 (Cars). Suppose a bunch of cars pass through certain stretch of road.

Whenever a car comes, you look at your watch and record the time. Let Xi be the time

(in minutes) between when the ith car comes and the (i + 1)th car comes for i = 1, . . . , 44.

Suppose you know the average time between cars is 1 minute. Find the probability that the

average time gap between cars exceeds 1.05 minutes.
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Example 5.42 (Baby food jars, cont’d). The process of filling food containers appears to

have an inherent standard deviation of measured fill weights on the order of 1.6g. Suppose

we want to calibrate the filling machine by setting an adjustment knob and filling a run of n

jars. Their sample mean net contents will serve as an indication of the process mean fill level

corresponding to that knob setting.

You want to choose a sample size, n, large enough that there is an 80% chance the sample

mean is within .3g of the actual process mean.
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Example 5.43 (Printing mistakes). Suppose the number of printing mistakes on a page

follows some unknown distribution with a mean of 4 and a variance of 9. Assume that number

of printing mistakes on a printed page are iid.

1. What is the approximate probability distribution of the average number of printing

mistakes on 50 pages?

2. Can you find the probability that the number of printing mistakes on a single page is

less than 3.8?

3. Can you find the probability that the average number of printing mistakes on 10 pages

is less than 3.8?

4. Can you find the probability that the average number of printing mistakes on 50 pages

is less than 3.8?
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Table B.3
Standard Normal Cumulative Probabilities

!(z) =
∫ z

−∞

1√
2π

exp

(

− t2

2

)

dt

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

−3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002
−3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003
−3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005
−3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007
−3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010

−2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014
−2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
−2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
−2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036
−2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048

−2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064
−2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
−2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
−2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
−2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183

−1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233
−1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
−1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
−1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
−1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559

−1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681
−1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
−1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
−1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170
−1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379

−0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
−0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867
−0.7 .2420 .2389 .2358 .2327 .2297 .2266 .2236 .2206 .2177 .2148
−0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451
−0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776

−0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121
−0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483
−0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859
−0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247
−0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641
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Table B.3
Standard Normal Cumulative Probabilities (continued)

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549
0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852
0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9773 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9983 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998

This table was generated using MINITAB.
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