
6 Introduction to formal statistical inference

Formal statistical inference uses probability theory to quantify the reliability of data-based

conclusions. We want information on a population. We can use:

1. Point estimates:

2. Interval estimates:

6.1 Large-sample confidence intervals for a mean

Many important engineering applications of statistics fit the following mold. Values for

parameters of a data-generating process are unknown. Based on data, the goal is

1.

2.
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Definition 6.1. A confidence interval for a parameter (or function of one or more parameters)

is a data-based interval of numbers thought likely to contain the parameter (or function of

one or more parameters) possessing a stated probability-based confidence or reliability.

A confidence interval is a realization of a random interval, an interval on the real line with

a random variable at one or both of the endpoints.

Example 6.1 (Instrumental drift). Let Z be a measure of instrumental drift of a random

voltmeter that comes out of a certain factory. Say Z ∼ N(0, 1). Define a random interval:

(Z − 2, Z + 2)

What is the probability that −1 is inside the interval?
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Example 6.2 (More practice). Calculate:

1. P (2 in (X − 1, X + 1)), X ∼ N(2, 4)

2. P (6.6 in (X − 2, X + 1)), X ∼ N(7, 2)
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Example 6.3 (Abstract random intervals). Let’s say X1, X2, . . . , Xn are iid with n ≥ 25,

mean µ, variance σ2. We can find a random interval that provides a lower bound for µ with

1− α probability:
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Calculate:

1. P (µ ∈ (−∞, X + z1−α
σ√
n
)), X ∼ N(µ, σ2)

2. P (µ ∈ (X − z1−α/2
σ√
n
, X + z1−α/2

σ√
n
)), X ∼ N(µ, σ2)
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6.1.1 A Large-n confidence interval for µ involving σ

A 1 − α confidence interval for an unknown parameter is the realization of a random

interval that contains that parameter with probability 1− α.

For random variables X1, X2, . . . , Xn iid with E(X1) = µ, Var(X1) = σ2, a 1− α confidence

interval for µ is

(x− z1−α/2
σ√
n
, x+ z1−α/2

σ√
n

)

which is a realization from the random interval

(X − z1−α/2
σ√
n
,X + z1−α/2

σ√
n

).

• Two-sided 1− α confidence interval for µ

• One-sided 1− α confidence interval for µ with a upper confidence bound

• One-sided 1− α confidence interval for µ with a lower confidence bound
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Example 6.4 (Fill weight of jars). Suppose a manufacturer fills jars of food using a stable

filling process with a known standard deviation of σ = 1.6g. We take a sample of n = 47

jars and measure the sample mean weight x = 138.2g. A two-sided 90% confidence interval

(α = 0.1) for the true mean weight µ is:

Interpretation:
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What if we just want to be sure that the true mean fill weight is high enough?
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Example 6.5 (Hard disk failures). F. Willett, in the article "The Case of the Derailed Disk

Drives?" (Mechanical Engineering, 1988), discusses a study done to isolate the cause of link

code A failure in a model of Winchester hard disk drive. For each disk, the investigator

measured the breakaway torque (in. oz.) required to loosen the drive’s interrupter flag on

the stepper motor shaft. Breakaway torques for 26 disk drives were recorded, with a sample

mean of 11.5 in. oz. Suppose you know the true standard deviation of the breakaway torques

is 5.1 in. oz. Calculate and interpret:

1. A two-sided 90% confidence interval for the true mean breakaway torque of the relevant

type of Winchester drive.

2. An analogous two-sided 95% confidence interval.
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Example 6.6 (Width of a CI). If you want to estimate the breakaway torque with a 2-sided,

95% confidence interval with ±2.0 in. oz. of precision, what sample size would you need?
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6.1.2 A generally applicable large-n confidence interval for µ

Although the equations for a 1−α confidence interval is mathematically correct, it is severely

limited in its usefulness because

If n ≥ 25 and σ is unknown, Z = X−µ
s/
√
n
, where

s =
√√√√ 1
n− 1

n∑
i=1

(xi − x)2.

is still approximately standard normally distributed. So, you can replace σ in the

confidence interval formula with the sample standard deviation, s.

• Two-sided 1− α confidence interval for µ

• One-sided 1− α confidence interval for µ with a upper confidence bound

• One-sided 1− α confidence interval for µ with a lower confidence bound
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Example 6.7. Suppose you are a manufacturer of construction equipment. You make 0.0125

inch wire rope and need to determine how much weight it can hold before breaking so that

you can label it clearly. Here are breaking strengths, in kg, for 41 sample wires:

[1] 100.37 96.31 72.57 88.02 105.89 107.80 75.84 92.73 67.47 94.87

[11] 122.04 115.12 95.24 119.75 114.83 101.79 80.90 96.10 118.51 109.66

[21] 88.07 56.29 86.50 57.62 74.70 92.53 86.25 82.56 97.96 94.92

[31] 62.00 93.00 98.44 119.37 103.70 72.40 71.29 107.24 64.82 93.51

[41] 86.97

The sample mean breaking strength is 91.85 kg and the sample standard deviation is 17.6

kg. Using the appropriate 95% confidence interval, try to determine whether the breaking

strengths meet the requirement of at least 85 kg.
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6.2 Small-sample confidence intervals for a mean

The most important practical limitation on the use of the methods of the previous sections is

That restriction comes from the fact that without it,

So, if one mechanically uses the large-n interval formula x± z s√
n
with a small sample,

If it is sensible to model the observations as iid normal random variables, then we can arrive

at inference methods for small-n sample means.
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6.2.1 The Student t distribution

Definition 6.2. The (Student) t distribution with degrees of freedom parameter ν is a

continuous probability distribution with probability density

f(t) =
Γ
(
ν+1

2

)
Γ
(
ν
2

)√
πν

(
1 + t2

ν

)−(ν+1)/2

for all t.

The t distribution

• is bell-shaped and symmetric about 0

• has fatter tails than the normal, but approaches the shape of the normal as ν →∞.

We use the t table (Table B.4 in Vardeman and Jobe) to calculate quantiles.
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Example 6.8 (t quantiles). Say T ∼ t5. Find c such that P (T ≤ c) = 0.9.

Figure 1: Student’s t distribution quantiles.

6.2.2 Small-sample confidence intervals, σ unknown

If we can assume that X1, . . . , Xn are iid with mean µ and variance σ2, and are also normally

distributed,
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We can then use tn−1,1−α/2 instead of z1−α/2 in the confidence intervals.

• Two-sided 1− α confidence interval for µ

• One-sided 1− α confidence interval for µ with a upper confidence bound

• One-sided 1− α confidence interval for µ with a lower confidence bound
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Example 6.9 (Concrete beams). 10 concrete beams were each measured for flexural strength

(MPa). Assuming the flexural strengths are iid normal, calculate and interpret a two-sided

99% CI for the flexural strength of the beams.

[1] 8.2 8.7 7.8 9.7 7.4 7.8 7.7 11.6 11.3 11.8

Is the true mean flexural strength below the minimum requirement of 11 MPa? Find out

with the appropriate 95% CI.
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Example 6.10 (Paint thickness). Consider the following sample of observations on coating

thickness for low-viscosity paint.

[1] 0.83 0.88 0.88 1.04 1.09 1.12 1.29 1.31 1.48 1.49 1.59 1.62 1.65 1.71

[15] 1.76 1.83

A normal QQ plot shows that they are close enough to normally distributed.
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Calculate and interpret a two-sided 90% confidence interval for the true mean thickness.
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6.3 Hypothesis testing

Last section illustrated how probability can enable confidence interval estimation. We can

also use probability as a means to use data to quantitatively assess the plausibility of a trial

value of a parameter.

Statistical inference is using data from the sample to draw conclusions about the popula-

tion.

1. Interval estimation (confidence intervals)

2. Hypothesis testing

Definition 6.3. Statistical significance testing is the use of data in th quantitative assessment

of the plausibility of some trial value for a parameter (or function of one or more parameters).

Significance (or hypothesis) testing begins with the specification of a trial value (or hypoth-

esis).

Definition 6.4. A null hypothesis is a statement of the form

Parameter = #

or

Function of parameters = #

for some # that forms the basis of investigation in a significance test. A null hypothesis is

usually formed to embody a status quo/"pre-data" view of the parameter. It is denoted H0.
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Definition 6.5. An alternative hypothesis is a statement that stands in opposition to the

null hypothesis. It specifies what forms of departure from the null hypothesis are of concern.

An alternative hypothesis is denoted as Ha. It is of the form

Parameter 6= # or Parameter > # or Parameter < #

Examples (testing the true mean value):

H0 : µ = # H0 : µ = # H0 : µ = #

Ha : µ 6= # Ha : µ > # Ha : µ < #

Often, the alternative hypothesis is based on an investigator’s suspicions and/or hopes about

th true state of affairs.

The goal is to use the data to debunk the null hypothesis in favor of the alternative.

1. Assume H0.

2. Try to show that, under H0, the data are preposterous.

3. If the data are preposterous, reject H0 and conclude Ha.

The outcomes of a hypothesis test consists of:
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Example 6.11 (Fair coin). Suppose we toss a coin n = 25 times, and the results are

denoted by X1, X2, . . . , X25. We use 1 to denote the result of a head and 0 to denote the

results of a tail. Then X1 ∼ Binomial(1, ρ) where ρ denotes the chance of getting heads, so

E(X1) = ρ,Var(X1) = ρ(1− ρ). Given the result is you got all heads, do you think the coin

is fair?

In the real life, we may have data from many different kinds of distributions! Thus we need a

universal framework to deal with these kinds of problems.
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6.3.1 Significance tests for a mean

Definition 6.6. A test statistic is the particular form of numerical data summarization used

in a significance test.

Definition 6.7. A reference (or null) distribution for a test statistic is the probability

distribution describing the test statistic, provided the null hypothesis is in fact true.

Definition 6.8. The observed level of significance or p-value in a significance test is the

probability that the reference distribution assigns to the set of possible values of the test

statistic that are at least as extreme as the one actually observed.
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Based on our results from Section 6.2 of the notes, we can develop hypothesis tests for the

true mean value of a distribution in various situations, given an iid sample X1, . . . , Xn where

H0 : µ = µ0.

Let K be the value of the test statistic, Z ∼ N(0, 1), and T ∼ tn−1. Here is a table of p-values

that you should use for each set of conditions and choice of Ha.

Situation K Ha : µ 6= µ0 Ha : µ < µ0 Ha : µ > µ0

n ≥ 25, σ known x−µ0
σ/
√
n

P (|Z| > K) P (Z < K) P (Z > K)

n ≥ 25, σ unknown x−µ0
s/
√
n

P (|Z| > K) P (Z < K) P (Z > K)

n < 25, σ unknown x−µ0
s/
√
n

P (|T | > K) P (T < K) P (T > K)

Steps to perform a hypothesis test:

1.

2.

3.

4.

5.

6.
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Example 6.12 (Cylinders). The strengths of 40 steel cylinders were measured in MPa.

The sample mean strength is 1.2 MPa with a sample standard deviation of 0.5 MPa. At

significance level α = 0.01, conduct a hypothesis test to determine if the cylinders meet the

strength requirement of 0.8 MPa.
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Example 6.13 (Concrete beams). 10 concrete beams were each measured for flexural strength

(MPa). The data is as follows.

[1] 8.2 8.7 7.8 9.7 7.4 7.8 7.7 11.6 11.3 11.8

The sample mean was 9.2 MPa and the sample variance was 3.0933 MPa. Conduct a

hypothesis test to find out if the flexural strength is different from 9.0 MPa.
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6.3.2 Hypothesis testing using the CI

We can also use the 1−α confidence interval to perform hypothesis tests (instead of p-values).

The confidence interval will contain µ0 when there is little to no evidence against H0 and will

not contain µ0 when there is strong evidence against H0.

Steps to perform a hypothesis test using a confidence interval:

1.

2.

3.

4.

5.

6.

26



Example 6.14 (Breaking strength of wire, cont’d). Suppose you are a manufacturer of

construction equipment. You make 0.0125 inch wire rope and need to determine how much

weight it can hold before breaking so that you can label it clearly. You have breaking strengths,

in kg, for 41 sample wires with sample mean breaking strength 91.85 kg and sample standard

deviation 17.6 kg. Using the appropriate 95% confidence interval, conduct a hypothesis test

to find out if the true mean breaking strength is above 85 kg.
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Example 6.15 (Concrete beams, cont’d). 10 concrete beams were each measured for flexural

strength (MPa). The data is as follows.

[1] 8.2 8.7 7.8 9.7 7.4 7.8 7.7 11.6 11.3 11.8

The sample mean was 9.2 MPa and the sample variance was 3.0933 MPa. At α = 0.01, test

the hypothesis that the true mean flexural strength is 10 MPa using a confidence interval.
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Example 6.16 (Paint thickness, cont’d). Consider the following sample of observations on

coating thickness for low-viscosity paint.

[1] 0.83 0.88 0.88 1.04 1.09 1.12 1.29 1.31 1.48 1.49 1.59 1.62 1.65 1.71 [15] 1.76 1.83

Using α = 0.1, test the hypothesis that the true mean paint thickness is 1.00 mm. Note,

the 90% confidence interval for the true mean paint thickness was calculated from before as

(1.201, 1.499).
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6.4 Inference for matched pairs and two-sample data

An important type of application of confidence interval estimation and significance testing is

when we either have paired data or two-sample data.

6.4.1 Matched pairs

Recall,

Examples:

One simple method of investigating the possibility of a consistent difference between paired

data is to

1.

2.
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Example 6.17 (Fuel economy). Twelve cars were equipped with radial tires and driven

over a test course. Then the same twelve cars (with the same drivers) were equipped with

regular belted tires and driven over the same course. After each run, the cars gas economy

(in km/l) was measured. Using significance level α = 0.05 and the method of critical values,

test for a difference in fuel economy between the radial tires and belted tires. Construct a

95% confidence interval for true mean difference due to tire type.

car 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

radial 4.2 4.7 6.6 7.0 6.7 4.5 5.7 6.0 7.4 4.9 6.1 5.2

belted 4.1 4.9 6.2 6.9 6.8 4.4 5.7 5.8 6.9 4.7 6.0 4.9
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Example 6.18 (End-cut router). Consider the operation of an end-cut router in the manu-

facture of a company’s wood product. Both a leading-edge and a trailing-edge measurement

were made on each wooden piece to come off the router. Is the leading-edge measurement

different from the trailing-edge measurement for a typical wood piece? Do a hypothesis test

at α = 0.05 to find out. Make a two-sided 95% confidence interval for the true mean of the

difference between the measurements.

piece 1.000 2.000 3.000 4.000 5.000

leading_edge 0.168 0.170 0.165 0.165 0.170

trailing_edge 0.169 0.168 0.168 0.168 0.169
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6.4.2 Two-sample data

Paired differences provide inference methods of a special kind for comparison. Methods that

can be used to compare two means where two different unrelated samples will be discussed

next.

Examples:

Notation:
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6.4.2.1 Large samples (n1 ≥ 25, n2 ≥ 25)

The difference in sample means x1 − x2 is a natural statistic to use in comparing µ1 and µ2.

If σ1 and σ2 are known, then Proposition 5.1 tells us

E(X1 −X2) =

Var(X1 −X2) =

If, in addition, n1 and n2 are large,
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So, if we want to test H0 : µ1 − µ2 = # with some alternative hypothesis, σ1 and σ2 are

known, and n1 ≥ 25, n2 ≥ 25, then we use the statistic

K =

which has a N(0, 1) distribution if

1. H0 is true

2. The sample 1 points are iid with mean µ1 and variance σ2
1, and the sample 2 points are

iid with mean µ2 and variance σ2
2.

The confidence intervals (2-sided, 1-sided upper, and 1-sided lower, respectively) for µ1 − µ2

are:
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If σ1 and σ2 are unknown, and n1 ≥ 25, n2 ≥ 25, then we use the statistic

K =

and confidence intervals (2-sided, 1-sided upper, and 1-sided lower, respectively) for µ1 − µ2:
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Example 6.19 (Anchor bolts). An experiment carried out to study various characteristics of

anchor bolts resulted in 78 observations on shear strength (kip) of 3/8-in. diameter bolts and

88 observations on strength of 1/2-in. diameter bolts. Let Sample 1 be the 1/2 in diameter

bolts and Sample 2 be the 3/8 indiameter bolts. Using a significance level of α = 0.01, find

out if the 1/2 in bolts are more than 2 kip stronger (in shear strength) than the 3/8 in bolts.

Calculate and interpret the appropriate 99% confidence interval to support the analysis.

• n1 = 88, n2 = 78

• x1 = 7.14, x2 = 4.25

• s1 = 1.68, s2 = 1.3
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6.4.2.2 Small samples

If n1 < 25 or n2 < 25, then we need some other assumptions to hold in order to complete

inference on two-sample data.

A test statistic to test H0 : µ1 − µ2 = # against some alternative is K =

Also assuming - H0 is true, - The sample 1 points are iid N(µ1, σ
2
1), the sample 2 points are

iid N(µ2, σ
2
2), - and the sample 1 points are independent of the sample 2 points.

Then K ∼

1−α confidence intervals (2-sided, 1-sided upper, and 1-sided lower, respectively) for µ1− µ2

under these assumptions are of the form:
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Example 6.20 (Springs). The data of W. Armstrong on spring lifetimes (appearing in the

book by Cox and Oakes) not only concern spring longevity at a 950 N/mm2 stress level but

also longevity at a 900 N/mm2 stress level. Let sample 1 be the 900 N/mm2 stress group

and sample 2 be the 950 N/mm2 stress group. Let’s do a hypothesis test to see if the sample

1 springs lasted significantly longer than the sample 2 springs.

900 N/mm2 Stress 950 N/mm2 Stress

216, 162, 153, 216, 225, 216, 306, 225, 243, 189 225, 171, 198, 189, 189, 135, 162, 135, 117, 162

150

200

250

300

−1 0 1
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e Stress level (N/mm2)

900

950

Figure 2: Normal plots of spring lifetimes under two different levels of stress.
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Example 6.21 (Stopping distance). Suppose µ1 and µ2 are true mean stopping distances

(in meters) at 50 mph for cars of a certain type equipped with two different types of breaking

systems. Suppose n1 = n2 = 6, x1 = 115.7, x2 = 129.3, s1 = 5.08, and s2 = 5.38. Use

significance level α = 0.01 to test H0 : µ1 − µ2 = −10 vs. HA : µ1 − µ2 < −10. Construct a

2-sided 99
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6.5 Prediction intervals

Methods of confidence interval estimation andd hypothesis testing concern the problem of

reasoning from sample information to statements about underlying parameters of the data

generation (such as µ).

Sometimes it is useful to not make a statement about a parameter value, but create bounds

on other individual values generated by the process.

How can we use out data x1, . . . , xn to create an interval likely to contain one

additional (as yet unobserved) value xn+1 from the same data generating mecha-

nism?

Let X1, . . . , Xn be iid Normal random variables with

E(Xi) = µ for all i = 1, . . . , n

Var(Xi) = σ2 for all i = 1, . . . , n

Then,

Let Xn+1 be an additional observation from the same data generating mechanism.
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E(Xn −Xn+1) =

Var(Xn −Xn+1) =

So,
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Generally, σ is unknown, so replace σ by s, and

Then, 1− α Prediction intervals for Xn+1 are
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Table B.4
t Distribution Quantiles

ν Q(.9) Q(.95) Q(.975) Q(.99) Q(.995) Q(.999) Q(.9995)

1 3.078 6.314 12.706 31.821 63.657 318.317 636.607
2 1.886 2.920 4.303 6.965 9.925 22.327 31.598
3 1.638 2.353 3.182 4.541 5.841 10.215 12.924
4 1.533 2.132 2.776 3.747 4.604 7.173 8.610
5 1.476 2.015 2.571 3.365 4.032 5.893 6.869

6 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 1.415 1.895 2.365 2.998 3.499 4.785 5.408
8 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 1.383 1.833 2.262 2.821 3.250 4.297 4.781
10 1.372 1.812 2.228 2.764 3.169 4.144 4.587

11 1.363 1.796 2.201 2.718 3.106 4.025 4.437
12 1.356 1.782 2.179 2.681 3.055 3.930 4.318
13 1.350 1.771 2.160 2.650 3.012 3.852 4.221
14 1.345 1.761 2.145 2.624 2.977 3.787 4.140
15 1.341 1.753 2.131 2.602 2.947 3.733 4.073

16 1.337 1.746 2.120 2.583 2.921 3.686 4.015
17 1.333 1.740 2.110 2.567 2.898 3.646 3.965
18 1.330 1.734 2.101 2.552 2.878 3.610 3.922
19 1.328 1.729 2.093 2.539 2.861 3.579 3.883
20 1.325 1.725 2.086 2.528 2.845 3.552 3.849

21 1.323 1.721 2.080 2.518 2.831 3.527 3.819
22 1.321 1.717 2.074 2.508 2.819 3.505 3.792
23 1.319 1.714 2.069 2.500 2.807 3.485 3.768
24 1.318 1.711 2.064 2.492 2.797 3.467 3.745
25 1.316 1.708 2.060 2.485 2.787 3.450 3.725

26 1.315 1.706 2.056 2.479 2.779 3.435 3.707
27 1.314 1.703 2.052 2.473 2.771 3.421 3.690
28 1.313 1.701 2.048 2.467 2.763 3.408 3.674
29 1.311 1.699 2.045 2.462 2.756 3.396 3.659
30 1.310 1.697 2.042 2.457 2.750 3.385 3.646

40 1.303 1.684 2.021 2.423 2.704 3.307 3.551
60 1.296 1.671 2.000 2.390 2.660 3.232 3.460
120 1.289 1.658 1.980 2.358 2.617 3.160 3.373
∞ 1.282 1.645 1.960 2.326 2.576 3.090 3.291

This table was generated using MINITAB.
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